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THE GENERALIZED SIMPLE WAVE1 

by 
2 

1 D. Maylor 
• 

Introduction. An important exact solution in the aero- 

dynamics of steady, perfect and irrotational compressible flow 

is the Prandtl-Meyer expansion wave.  This solution was originally 

obtained by seeking directly a solution of the equations of com- 

pressible flow referred to polar coordinates in which :he radial 

distance is of no consequence to the density, pressure and 

magnitude and direction of the velocity.  It therefore had the 

property that the density, pressure and velocity vector were 

constant along radii through a fixed point, but this restriction 

can be removed and the solution is capable of generalization to 

the case for which conditions are constant along a series of 

straight lines not necessarily concurrent.  In the extended case 

•the variables u, v, p, p are all functions of just one independent 

variable and relations of the type 3(u,v)/d(x,y) = 0 hold every- 

where. The vectors vu, Vv, Vp, vp are all parallel and each of 

"the variables may be considered as reducing to a function of a 

function X(x,y) which may remain unspecified or chosen to reduce 

to q, or 6 (say), or any combination of these quantities5 as 

convenience requires. Such flows for which the velocity vector 

1. The results presented in this paper were obtained in the 
\ course of research sponsored by the Office of Naval Research 
S under Contract N7onr-35801 with Brown University. 

• |-j t 
i 2, Research Associate, Division of Applied Mathematics, Brown 

f\ University. 

yddaor. 
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cj. reduces to a (vector) function of just one independent variable 

X are now commonly referred to as "simple waves".  It is known 

that steady irrotational flows defined in this way have the 

property that the pressure and density, as well as the velocity 

q, reduce to functions of \. 

More generally it is desirable to extend the concept of 

the simple wave, for which q reduces to a function of \ only, 

but to say nothing about the remaining variables p and p, to 

flows which are not necessarily steady and irrotational or for 

which conditions of velocity are not necessarily constant along 

straight lines or that the isovels intersect in a fixed point. 

The first step in this direction was taken by prin [1] who con- 

sidered steady rotational plane flow by adapting the Prandtl- 

Meyer method thereby presupposing concurrent isovels. Martin, 

in a series of lengthy investigations, [2, 3j *+] succeeded in 

dealing with the more general case, without making any assumptions 

about the isovels, by extracting the simple wave from a general 

theory in which the pressure p and the stream density function 

T|) were selected as fundamental variables.  It appeared that the 

isovels constituted a system of straight lines, parallel or con- 

current,  Ghaffari [51 applied the original steady irrotational 

simple wave theory in terms of q as the fundamental variable with 

the aid of the Legendre contact transformation and Giese [6] 

later used this same procedure in terms of \ to discuss essen- 

tially geometrical properties of the hodograph for one precisely 

* Numbers in square brackets refer to the Bibliography at the 
end of the paper. 

«u         ' •  -flh'.miii-r v *   •<MitifY-r~" ~ «fc_"S*.T. 
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similar phenomena including, in addition to the simple wave 

q(X), the "double" wave q(X,^). 

The One Parameter Fields.  Only when the flow is unsteady 

is the velocity a function of two independent variables in which 

case the problem is mathematically a double wave, although the 

flow physically is instantaneously a simple wave varying with the 

time. The one parameter velocity field is a special application 

of a more general method in which any property of the flow may 

be regarded as being reducible to a function of only one parameter. 

In unsteady flow the method may be employed by focusing attention 

on velocity potentials of the type <p(X) or more generally <p(^>t). 

In linearized flow the method yields supersonic potentials when 
.2 :2/„2 A Jl X = x - B (y + z ).  The reduced potential of oscillatory flow 

is of this variety, 
..    N  cos nn\ f(x,y,z) = j-2_ 

,2 _ M2  -        ,—2 with the standard notation B= Vr -  1, nQ = w/aB •  The curves 

X(xyt) = constant, are the characteristic curves which in the 

generalized simple wave reduce in all cases to a system of straight 

lines (not necessarily coincident with one family of Mach lines 

of supersonic flow) except in the rotational unsteady compressible 

case. 

The purpose of this report is to show how a variation of 

the hodograph method, based, on the application of the Legendre 

contact transformation in terms of the parameter X which remains 

unspecified, may be conveniently employed to rapidly construct 

rotational and unsteady generalizations of the simple wave q(X) 

——aaxwfca . - 
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when \ =  \(x,y,t) in general. Finally the more general unsteady 

wave for which £ = q(\jt) ; X - \(xyt) is considered in Section IV. 

1 

General Equations of the Flow,  The general equations 

of motion, continuity and adiabatic transformation, 

(at + 1 ' v>a + P  VP = o 

ft + v • -Cpq) = o at 
-Yx _ C^ + q ' V)(PP"J) = 0 

may be transformed to give 

2 _2_ 
3 (aY_1) + V ' (£ aY_1) = 0 at (l.D 

where 

aq 
a# + VH - TVS = q W at iA - 

2     2 
H = V + f-TT   S = °v loS (Pp"Y) 

(1.2) 

I 

w - vA a 
1/2 

and a = (yp/p)   defines the acoustic speed and T = p/(pR) the 

absolute temperature.  Since T - a /yR then Crocco's equation 

(1,2) may be used to yield another equation in addition to (1.1) 

involving just a and q 

VA[S"2 (T£ + a • ' *}- 0 
or 

V.(a"2 (q. H qVl - q. W) 1 = 0. 
A L      —X —A    J 

(1*3) 

KIT.'   i IT   r -• --rrili -in i       ir'ii   i     ,fl-    ,,   r        ii.       i*1« -'i— M7r Vii.ii •rTi"J,      . 
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Steady Rotational plows; A Simplified Theory. Attention 
» 

being confined to iso-energetic flows for which H = constant, 

the general equations for the velocity reduce to 
2 

V ' (q aY_1) = 0 (1.5) 

(1.6) 
A    — y\ — 

where 
(1.7) 

• 

£ 

VA (a-2 ±jp - 0 

2 
q 

Y - 
_c2 

1     T 

serves to provide the acoustic speed directly in terms of the 

velocity and the iso-energetic constant c (actually the greatest 

possible speed).  The fundamental assumption of the existence 

of a flow of the simple wave pattern is most easily exploited 

by using, not tliC . rd?lnary stream function, but Crocco's stream 
1     » 
E 

function iy  given by P 

Y-l 
V ty  = KA q a (1.8.J 

the necessary condition for the existence of which is implied by 

(1,5)5 and then define the associated function ?(x,y) by the 

Legendre contact transformation 

4, s tj + £ . £ (1.9) 

_2__ 
V>-1 

1 with the notation ^ = K q a *  =y\j) which in the following 

analysis is convenient because £ rather than q, is the fundamental 

field vector. 

The transformations employed are two-fold: 

1,  The current independent variables (x,y) are replaced, by 

(M>! 
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2, The dependent function ^(x,y) is itself replaced by ?, 

its Legendre transform, but is also retained as a fund- 

amental independent variable where necessary. 

This procedure reduces the general problem of the 

rotational simple wave, originally that of two non-linear partial 

differential equations for q(X); w(x,y) to the study of an 

ordinary second order differential equation for q(\) and a 

linear ordinary.'- second order differential equation for "PCX). 

This reduction is rapidly achieved because £ and <? both reduce 

to functions of X only, they are not general functions of the 

new variables (X,\)J), as for example, is w(X,\|j).  The transforma- 

tion (x,y)—^ (\,\J0 is permissible because 

m^ii * o 
3(x,y) 

which independence is immediate because 

vA fi(\) = - &A vx = o XA 

i 

in virtue of  v\ V\|> = 0. 

It follows  that      VXA V^ - 0 
A 

that is, 

only when 

2A ?X = o 

Q Q   ~  0 
*A*X 

which is the excluded degenerate case, ®\ ~ 0? of a parallel 

(shear) flow.  The following outlines and illustrates the general 

method, the principles of which are subsequently adapted to 

study unsteady flows in the sections which follow.  Full details 

and results of the rotational one-parameter fields will be found 

V — 
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in the author's memoir [7] where; a slightly different treatment 

is employed.  It is emphasized that the adopted procedvire is not 

restricted to flows of the type he;r-e discussed, but with modifi- 

cation is capable of application to a great diversity of fluid 

flow phenomena of the simple wave pattern, (e..g. unsteady, 

rotational and viscous incompressible motion - see another 

report), the criterion beint", the existence of a suitable field 

gradient vector depending on X only. It is at once clear from 
p 

(1.7), and (1.8) that a , and &, reduce to functions of \ only, 

being independent of O|J, therefore it is possible to write the 

total differential of (1.9) in the form 

d* + (r ' £x)d\ = 0 

so that 9 = SKX) and 

?x + r. * & = 0 (1.10) 

from which by further differentiation is obtained 

<*vv + £' ^>vx + ^  =0 
A *\v Ci.i: 

i 

The following representations are employed, 

Jl 
|q       flj   * D(X)  a*1'"1 

~XA    * 

£L,   + F(X)0     = K(X)2 
AA A. 

aVx)   =   (a2  -  q2)q2 + a2q20^ 
where 

F(X)  = - J^. (log fev) 

"« *X p Qv 

(1.12) 

(1.13) 

(1.1*0 

(1.15) 

(1.16) 

SSSSP fc.-*.-rfrsg»Mm.» io«At»%f<^cji&^a.^a w «wi as •• i » M^ .»••. .IAJI • mrm>m m - M>- 'IS • • -,« *..* -* ^.^ —/- 
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Also an expression for the vorticity which follows from (1.6), 

and (1.8) 
_ £x_ 

Vili V(w a Y-l) = o 

or -nrr 
w = G(^)aT (1.17) 

in terms of some function G(\)0. 

Since w =7, q = VX. q.  then (1,11), (1.12),and (1.17) 
A —    A — \ 

gives 
(«xx + E *axx) G (*) = D(^) 

finally substitution of the scalar produce y. • £  from (1,13) 

with the aid of (1*9): and (1.10) gives 

[3>x> + F1>x + K(i|i -   ?) ] G   (T|»)   = D(\) (1.18) 

Since (\,\|>) are independent, a field equation of the type (1.18) 

can only he true (since P, K, ?, D are independent of if) if 

either 

1. GG|>) - A;  K(\) = 0;     1JXX + F(\)\  = 2i£l 

2. G(T|I) = A/i|>} AK(\) = D(\);  \x + F(\)?x - K(M'P = 0 

where A is a constant determining the vorticity distribution In 

alternative forms      2y 2y 
Y-l v-T 

A a  •   (A/T|)) a' 

1 in terms of Crocco's stream function \j)$ if formulae expressed in 

terms of the normal stream function are required then appropriate 

conversion relations must be employed. 

m i MUM tilUti 1 1»i -•» - 
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Properties of the X-lines. The first possibility 

K(\) = 0 implies, from (1.13), 

which may be integrated to show that CjL is parallel to a fixed 

vector.  Therefore the X-lines (1,10) constitute a system of 

parallel lines.  These are zhe  flows which appear to elude treat- 

ment by other general methods and for which a direct approach 

is simpler. 

The second possibility, for which 

<P >x + F(\)?X - K(\)? - 0 

£xx + F(\)£x - K(X)£ = 0 

implies, eliminating the functions F(X), K(X), 

Cl.l0>> 

(1.2C) 

? u V 

\ 
ux \ 

= 0 

\x uxx vxx 

where   (U,V)  are  the  components  of £(X),     This means however that 

the  three non-parallel  lines 

5f+'£«fl»0j      ?V
+£*&X=0>      ?XX+£*2^=0 XX 

are concurrent and implies the existence of a vector r^(M such 

that 
£-0 

9    n — r> m -t-  T>    z     r\    —    A •   m. 4. •*» . n   — A •   IT)    -I--" * * £0  k -- «,  *x^rtj*iLx - U»  *\\ 
+ ^0  *XX 

identically in X, 

•w* MMMWMMBWPfT***"  i    i w—Bap—'itfim in. mw f«,iir"»rirnii ~nm     < i      f 
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Differentiating the first one and using the second gives 

feo\ ' a = ° 
whilst differentiating the second and using the third yields 

so that since the vectors 2, £ are neither zero nor parallel 

(except in degenerate cases). 

p — (> 
5X~   * 

Therefore r is a fixed vector, independent of X, and the three 

lines in question all pass through the same fixed point for all 

values of X; in particular the parameter lines (1.10) are con- 

current. These results show that in no case f.S  a non-degenerate 

envelope of the X-lines possible, and also that in the case of 

concurrent X-lines, that, by selecting as the origin the point 

through which they all pass, "P(X) = 0.  In other words, the 

Legendre transform of Crocco's stream function may be taken to 

be identically zero  in the theory of a rotational steady simple 

wave, except when conditions are constant along a series of 

straight lines.  This is in direct contrast to the classical 

simple wave theory in steady potential flow for which an arbitrary 

convex  X-envelope is possible corresponding to arbitrary '-PCX). 

The preceding method is still valid, however, as far as equation 

(1.18), which in the simpler case of G^) » Q    simply reduces 

to D(X) = 0 so that ?(X) may be arbitrarily chosen (subject to 

the condition that the X-envelope is a simple convex curve). By 

..*•—,*-._—^.,t..^..fa _-*vii 

V 
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(Li1*) the equation for the velocity D(\) = 0 will yield by 

integration the standard hodograph epicycloid 0 = Q(q). More 

directly (1.5) gives 2 

and VA q = ° §ives 

7.X ' (q aY_1)x = 0 

7XA q = 0 
A -X 

therefore the velocity relation for a classical simple wave is 
2 

Q.x • (q a'   )x r: 0 

which on expansion yields D(X) = 0. 

. 

i 

2,  The Simple Wave in Unsteady Flow.  When unsteady flow 

is considered a stream function never exists in compressible flow 

and it is necessary to confine attention to irrotational motion 

in order to adapt the preceding method by replacing the stream 

function of Crocco \J> by the velocity potential function cp(x,y,t). 

The equations of motion, continuity, irrotational motion and 

isentropic flow are 

Pt +7 " Cpq) = ° 

<L 
+ <q * 7)q + 1 VD - o "t p 

VAq=0 

-Y pp      = constant 

may be used to yield the general equations of unsteady potential 

flow in the for.n 

vm. —•   — ——t »"   '- MNNUMMMMC3K•»*r*i*''--*m7- •-:  *••  •.-.. •'**'.-<su-^4 i > *-   - 
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B\ (a
b) + 7 • (q ab) = 0 

?  Y=I + 8t   2 

12 

(2,1) 

(2.2) 

.1/2 
where c is a constant, b = 2/y-lj q = v?j and a = (22-)  ' is the 

acoustic speed. 

Intrcdiicing $, the Legendre transform of q>, 

then 
cp = <$ + r • 7<p 

d$ + r • dq = 0 

(2.3) 

The simplest generalization of the simple wave will be one for 

which the velocity vector q reduces to a function of just one 

independent parameter X incorporating the time, X = X(r $ t)« 

Therefore q = q(X) and dq = q*dX so that 

d$ + r *£\dX = 0 

7$ + (r • q )7\ = 0 
"•  •*\ 

therefore $ = <±>(X,t) and 

*\ + £ ' 1\ = ° (2A) 

the function $ reducing to a function of (X,t) only, involving 

t independently as well as through \(r 5 t). 

The surfaces of constant \, that is of constant q, j5 

constitute a system of planes which vary with the time.  Iiv plane 

flow the velocity is constant along each of a family of straight 

lines varying with the time and normal to q».  The angle of 

intersection r(X) with Ihe streamlines being given by 

cot r = (q8x)/q^ (2.5) 

V 
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Differentiation of (2.1+) with respect to a position gives 

<®XX + S ' i^dx + dr • a = 0 •\K 

that is, since d\ = dr • v X, 

C*\x + - ' %\\)v*- + ^ = ° (2.6) 
•XX""  iX 

Differentiating (2,3) partially with respect to the time gives, 

since 0 = $(X;t) 

9 = $ + ($x + r • £J\ 

9 = *t (2.7) 
that is 

in virtue of the field equation (2.*+).  An additional differen- 

tiation now gives 

•  *tt   Xt 

whilst the expression for X analogous to (2.6) for VX is similarly 

obtained from (2.*+) by differentiation with respect to the time 

giving 
(0xx + £ ' ixx)X+ \t = ° (2.8) 

so that the final expression for 9 is 

2 . 
<P = «W " V^n + L  * g,J 

-1 
rtt Xt' XX •XX 

(2.9) 

For flows of the type considered we are replacing the fundamental 

independent variables (x,y,t) by (X,cp,t) so that the vector 

operator for grad, 

K**** WmWWt^W'WMO'wwMI.^W'WW 1 
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are equivalent. When operating on q(\) this operator reduces 

to 7?v 8/3X; but the general form must be retained for functions 

like 9j <P and a^ = yv/pt  since they will in general be functions 

of 9 as well as (X,t)» 

Actually in the one parameter fields here considered 

only 9 does not in general reduce to a function of (X,t) only. 

The equations (2,1) and (2,2) for the velocity now 

become ? , 
(a q - qq,q) * VX = 2qq X + 9 

4-+ & - »t • 4 <2-io) 

and the first gives, on substituting for 7 X, X and 9, 

(a\ " <*£> ' lx 
B ^\ + *\t>\t - *tt(*xx + £ • ixx) 

that is 0 ~ 0 aX = (qq^ + V~ - *tt(*XX + £ " W (2*l:L) 

Since the ultimate aim is to replace (x,y) by (^>9), it remains 

to obtain suitable expressions for the scalar product r * q 
"~XX 

occurring in (2,11). This is achieved by noting that, except in 

degenerate cases, the original field equations defining X(x,y,t)j 

*(x,y,t), 
$ + r • q = 9,  \ + L  * g\~  ° (2.12) 

may be solved explicitly for r to yield a parametric representa- 

tion of the plane in the form r(X,9,t).  The position vector of 

the field point occurring in (2.11) may be replaced as required 

by functions of the independent variables (X,9,t) by using the 

expression 

MI IIP'I •yMwggwygg^iigy'iwi' HW ;•<;.:• '•.:,... 
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\    I 

•  !i 

q  + A,(X)q + Bn(\)q = 0 
—\ \    x   —    —   —'V *x\ -X 

where 
.3Q 2 -2- 

> 

(2.13) 

(2.H+) 

Scalar multiplication of (2.13) by £ ^nd using (2.12) gives 

finally 
r • q  = (<J> - cp)A1(\) + $x BX(X) 

so that (2.11) becomes 

a2^ = (qqx + *Xt)
2 - *tt[*xx + 3>x Bj_ + A1($ - <p)]    (2.15) 

o 
in which a , being given by (2.10), is independent of cp. 

cp(r;t) never reduces to a function of (X,t) only for 

otherwise the velocity vector 

q = 7 9 = cp^vX 

will only give irrotational flow 

V = y  q = VXA 0      = 0 
'A A -X 

in the trivial case q q = 0. It follows that if the field 
-A ^X 

equation  (2.15)  is to be valid everywhere then 

and 
a 2_2 

x 11. 

n 

ix B (qq^ + <\t>   - *ttc*x\ + BiV 

(2.16) 

(2.1?) 

The condition (2.16) shows at once that either, or both, of A^X), 

3>tt(X)t) must vanish identically. 

*A\ 

1 TtiTtf-itTi rn ui nr   •       "i *""<wflBFW   -^y«;* .. 
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!• $tt(X,t) = 0. O (\,t) reduces to a function of X only 

say g(X) and we can write 

<D(\,t) = tg(X) + f(\) (2.17) 

where  g(X)  is related to q(X) by  (2.17), 

a2q2  =   [qq,   + gH\)f (2.18) 

and 2        2 2 

V + ^T + g(X) = T- (2-19) 

It follows the parameter X(x,y,t) is given, implicitly, by the 

field equation (2.l+)} 

tg«(\) + f*(X) + £ • q  = 0 (2.20) 

Regarding f and g as functions of q the following rela- 

tion is equivalent tc (2.18), and (2.19), 

(Y - 1X1 + q2©a
2)(c2 - q2 - 2g) = 2(q + g )2      (2.21) 
4 q 

The functions fCq)j g(q) may therefore be chosen arbitrarily, 

the velocity distribution ©(q) corresponding to any selected 

g(q) being obtained from the ordinary differential equation (2.21)* 

The field equation (2.20) may then be used to determine 9(q) as 

a function of (x,y,t) 

II. A^(\) = 0.  The second possibility implies from (2.13), 

and (2.1M-) 

*x\ " axcTx ^ * ex> = ° 

that is 
dX.q20x -X 
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I 

so that (l/q 9\)qv is a constant vector.  Therefore the \-lines 

(2»h)   comprise a system of lines parallel to a fixed direction. 

Integration of A-^CX) = 0 twice, using (^.l1*-). gives 

q = q0 cosec (6 + 0 ) (2.22) 

in terms of constants of integration q0, 0 .  The component of 

velocity in the direction 0 =2L"Q0  has the constant value q , 

Since 
q sin (©+©)= q t(0) 

with the usual notation for t(0) the unit tangent vector to the 

streamline.  Then 
,„2 

49 

therefore  the  X-lines 

may be rewritten 

q  sin*(Q + 0o) = - qQ t(0Q) 

<P + r • q = 0 
t3 -a 

3> sin^(e + © ) = q0 r • t(- © ) (2.23) 

When expressed in terms of © the equation (2,17) becomes 

2 2 2 d , -2, 
a 3g = (^ + *et>  " *tt 

q d© <*""*©> 

and then, using the parameter z -  q cot (0 + ©^) > may be trans- 

formed into the form 
2 2 

a = (z + $ .) - $  $,, 
zt     zz tt 

wnere 

2a = 2 _ 2 _ z2 _ ^ 
y-1       °        t 

or finally using 



All-111 18 

F(z;t) = *(z?t) + £ tz2 + \  (q2 - c2)t (2.2lf) 

so that „ 
a2 = - (Y- l)F.(zjt) (2S25) 

then        0 
F;-F F,. +W  + cr - 1)F. - O (2.26) 
zt    **, oi,    tt    '      t 

Similarly the equation (2.23) for the parametric lines may be 

expressed in terms of z and F(z,t), 

F (z;t) - tz + x cos 0 - y sin 0=0 

which serves to provide z as a function of (x,y,t)when any. solution 

of (2»26) for F(zjt) is inserted.  If © = 0 is selected then 

the parameter lines are parallel to the y-axis and are given by 

x = tz - F (zst) 
z 

where z = q cot ©. 

Concurrent Parameter Lines. When the classical theory 

of the steady irrotationai simple wave is developed, the general 

simple wave generated by X-lines enveloping a convex curve is 

obtained by a generalization of the original Prandtl-Meyer expan- 

sion wave for which the X-lines are concurrent through a fixed 

point.  It is clear however that this procedure cannot be repeated 

to obtain a generalized unsteady simple wave from the case of 

concurrent parameter lines, for this latter is the very case 

which is automatically excluded by (2.17).  For if the X-lines 

are concurrent through a fixed point, this may be sej.ected to 

coincide with the origin then (2,20) gives g'(X) = f»(X> = 0 so 

that $ reduces to a function of time only, in fact $ = at t- b 
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where a,b are constants.  The equation for the velocity (2,l8) 

reduces to 

where 2 

2 2   2 2 
a q     = q q^ 

2 
-V + —a—— = constant 
2   Y - 1 

so that the entire flow has reduced to the Prandtl-Meyer simple 

centered expansion wave in steady flow.  The second possibility 

A, (\) = 0 implying parallel \-lines (preceding pages), it follows 

that there is no unsteady simple centered wave, with fixed center 

of the type q(X), 

The General Case..  The envelope E(t) will be obtained 

by solving for r the equations 

n 
$K + r • qx =0 

\\  + E ' *XX = ° 

(2.27) 

U 
the second, representing a one parameter family of straight lines. 

being obtained from the first by partial differentiation v/ith 

respect to X (x,y,t assumed constant). These lines will be 

parallel if q  q  = 0, or A,(X) = 0, which exceptional case 
—XA —XX •*• 

shall be excluded at present.  For any given (X,t), the 

system (2.27) represents a line pair intersecting in the point 

r (X;t) given by 
~o 

r (\;t) = (*VQV. •$.. SJU  1  l"1 
-o        X-XX   XX *X 1 -XA -XX1 

Now vector multiplication of (2.13) by q gives, since 
A. 
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then 

o 
|q q |= q 0 = exp - I B,(X)d\, 
-A -\     •»        ' 

Iq  q  | = A (\) exp - | B,(X)d\ 
A. A "~XX      X J        ± 

therefore 

A1(X)ro(X;t) = (d>x £^ - <D  & ) exp j B],(X)dX     (2.28) 

As X varies, r (X,t) will, for fixed t, generate a curve, the 

envelope E(t) of the X-lines,  If the X-lines are concurrent then 

E(t) degenerates into a point and r^X^t) is fixed for all values 

of X, That is r_ reduces to a function of time only, therefore —o 

3r /ax = 0. —o 
Elimination of the vector 0,  from (2.13) gives 

XX 

A1(X)ro(X;t)  = -  [\x%.x + ^   (^fi + %&>]  exP   I   B]_(X)d\ 
J 

giving after partial differentiation with respect to X and 

repeated use of (2,13), 

VM EoX = " C*^ + EA>. + <A1 + V*X 

- A1- <*w+ Bi \%* exp ! v:,°dX 
1 J 

so that (r )v = 0 when $>(X;t) satisfies 

A. 
*x + 17 ' ax (*xx + W - (\x 

+ W rl = ° 
x 

giving, on partial integration in terms of a function of inte- 

gration h(t), 
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Since the case A, (X) = 0 is excluded, then y>(X;t) is restricted 

to the special form (2.17) so that 

<e\\ + Bigx + V} + (fxx + V\ + Aif)t = VX)h(t) 

in terms of g(X), f(X), A..(X), R,(X) which are not functions of 

the independent variable t.  It follows that h(t) is not arbitrary 

but must be a linear function of t, defined in terms of constants 

(a , k0)> not necessarily non-zero, 

h(t) = a + tb o    o 

so that f(X), g(X) are now given by 

XX + BlSX + Vg - ao> =0 

f xx + Vx f Ai(f - V = o 

Therefore, apart from additive constants not affecting ^.(Xjt), 

the functions f(X), g(X) both satisfy the ordinary linear differ- 

ential equation 

exx + BlgX + Ale r ° (2.29) 

in order that the X-lines may be instantaneously concurrent. 

When this condition is satisfied the time variation of r (t) will —o 

be given by (2.28); since $. = g(X), 

AX(X) (r) = (gxaxx-g,xax) exp B1(X)dX 

= -   iSySh 4 + Bl S\>  + gXX -X] exp   !  Bl(X)dX 

or 
(r ). = [g o - g^ £] exp  B-,(X)dX 

•o't 'X  °X r 

i 

in virtue of (2,29). Zl^Ct) being independent of t or X; it follows 

t~T»— 
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that the point of concurrency (the instantaneous "center" of 

the wave) moves with constant velocity in a fixed direction^ 

[Although apparently a simple function of X, it may be demon- 

strated by direct differentiation with respect to X and the use 

of (2.29)5 (2.13) that (r )  =0, as it must since (LQ\ =  °> 

so that (r )  reduces to a constant,] 

Therefore if 

©  + B_ (\)G> + A, (X)# = 0 
XX     1     A     1 

the X-lines are concurrent through the point r (t) 

(2.30) 

1 

A-(X)-£o(t) = (*x%A-OxA) exp B-, v,/^ ydX 

which with the aid of (2.13), and (2,30) reduces to 

C 
B1(X)dX rQ(t) = ($^x - $x QJ exp 

which, in fact, is also the intersection of the lines 

$ + r • q = 0;   $. + r • q. = 0 X *X 

The three lines 

(2.3D 

$ + r • q = 0 5  $ + r * Q, = 0 5  <I\.v+21*qi.v = 0 

are therefore concurrent, for all X, through the point r {I), 

This property may also be derived by a similar method to that 

resorted to for the steady rotational flows; equations (2,13), 

and (2.30) being exactly analogous to (1.20) and (1.19). 

when (2.30) is satisfied the unsteady simple wave reduces 

to a flow which is essentially "steady".  In fact a simple 
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t 
transformation to the moving rectangular coordinate system r 

• ; 

r«(X,9,t) = r(\,cp,t) - £ (t) 

gives since r(\,cp,t) = [(& - cp)£ - <£> &] exp  B-^MdX 

obtained by solving (2.3), and (2.*+), therefore 

r 
r«(\,(p,t) = - 9 0    exp  B1(X)d\ 

so that the revised representation reduces to r' (\,cp) and the 

equation ox the parameter line O. + r • q.= 0 referred to the 

moving axes is 
$. + (r1 + r ) • q, = 0 

A. ""O    ~"\ 

in which (2.31) gives 

\  + ro • £x = \ - \  (2 • qx) exp j B1(X)dX 

j 

in virtue of the definition (2.1M-) of B-,(\).  The fundamental 

equation of the lines of constant \ therefore reduces to 

r1 • q = 0 
—\ 

which, since q = q(\), defines \ as a function of r1 only, not t» 

Referred to the new coordinate system moving along with the point 
i 

of concurrency r_ (t) with constant velocity, therefore, the flow 
» 

1 

expansion wave* 

reduces to a steady phenomenon - the simple central Prandtl-Meyer 
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Non-Degenerate Envelope.  The case of concurrent \-lines 

representing no essentially new phenomena, attention will be 

directed to flows possessing a non-degenerate X-envelope.  For 

such flows the functions f, g may be regarded as functions of 

q (this amounts to selecting the arbitrary parameter X(xyt) to 

coincide with q(xyt) = q(X) = q = X).  The relevant equations are 

(Y- D(l + q
2Qq

2)(c2 - q2 - 2g) = 2(q + gq)
2       (2,32) 

tg + f + r • q =0 (2.33) 
q   q     -q 

then, provided at least one of the relations 

&• + B^ ^g + Ai '^q'g *  ° qq    1    q    1 

fqq + B1(q)fq + A-1(q)f * 0 

is not violated, the X-lines will not be concurrent. 

Solution 1,  Take for example g(q) = !• q 5 f(q) = 0 then, 

if b2 = c2/2 

let 

a2 = (y- l)(b2 - q2) 

2   v2/ • 2    2  2S q = b (sin z + p cos z) 

p2 =Y - 1 

then 
Y + 3 

a = 2bp cos z 

so that, from (2.32), 

! .0 - „~1 4 
* q 

• 

- 

qQ = p   tan z (2.3!+) 

when the positive sign for the square root is selected, 

Expressed in terms of z, 
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p       2     P   -l 
P9    =  (1 -  p^CL+p cot-z) z 

•• 

-. 

i 

'•1 

which may be  integrated to give 

0 = p    z + tan"  (p  cot z)  + n - — (2,35) 2P 

by suitable choice of the constant of integration. 

Now from (2.5) the angle which the streamlines make with 

the lines of constant velocity is given by,using (2t3
L0, 

tan P = p cot z (2,36) 

so that (2.35) may be rewritten, 

9 = p"1* + P + (2 - p"1) J (2,37) 

(2.33) becomes 

qt + x(q cos 9)  + y(q sin 6)  =0 

or, on performing the differentiation, using q9 - cot P; and 

expressing x,y in terms of polar coordinates (r,cp) (x = r cos 9, 
• 

y = r sin 9), 
qt sin r = r sin (9 - V  - 9) 

Finally, in terms of z, using (2,36), and (2.37), 

R sin (p z - 9 - JL) = cos z (2.38) 

where R = r/pbt.  For any fixed z, equation (2.38) represents the 

(R,9)equation of a straight line and the envelope of the system 

as z varies will be given additionally by partial differentiation 

with respect to z; yielding a second line, 

r* u «.- 



r 
All-lil 26 

R cos (p~ z - cp - *£-) = - p sin z (2.39) 

and therefore the equations in parametric form may be expressed 

in terms of z (in terms of which r, q, © are already known). 

9 = p^z - tan"1 (p tan z) - JE- + ^S. (2.1*0) 
2p   2 

R = cos2z + p2sin2z (2,i+l) 

therefore the (R,cp) equation may be explicitly written down if 

desired, since 

tan z . (J-^!)1/2 

F* - p^ 

and 0 < P < R < 1  (p2 = -L f    _ 7v 
11   T  5y* 

If in (2.1+0), z is regarded as the radial distance in 

polar coordinates (z,cp) than (2,1+C) is the equation of an epi- 

cycloid, and since (2,^-1) may be rewritten 

R2 = (1 - p2) cos2z + p2 

the actual curve in the (R,<p) may be drawn. 

The envelope is .similar to an epicycloid which increases 

linearly in size since r = R pbt.  Along each tangent line the 

velocity vector is instantaneously constant and is inclined to 

the line at the angle r according to (2,36).  The instantaneous 

streamlines are perpendicular to the tangent generated from the 

point of the envelope given by z = 0 and then sweep round to 

approach asymptotically the direction parallel to the tangent at 

Z = ic/2. 

The parameter line z = 0 along which the flow commences 

•:• 

r* • *!   •-- 
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moves normal to itself with velocity pb, equal to that of the 

fluid along it. The z = 0 line is perpendicular to the radius 

© = - P where, p -  - it/SCp"1^) lies in the fourth quadrant, 

(0 < P < n/2 for y = 7/5? P2 = 1/11). 

3•  Soluticn Involying an Initial Advancing Discontinuity. 

When the X-lines are parallel the flow is given by a solution 

F(z;t) of the non-linear partial differential equation 

Fzt - Fzz Ftt + t  Ptt + ^ -  1)Ft •s ° (3a) 

the velocity parameter z(x,t) being then given by the field 

equation 
x = zt - Fz(z;t) (3.?-) 

For the acoustic speed? a~ = .X_rJL_(c'- - q - z*- - 2$ ) ft 2        o t 

that is a* * - (Y - l)Ft(z;t) 

so that for non-negative pressures we must consider solutions 

of (3»1) for which the time derivative is negative only. 

An interesting solution exhibiting an unsteady singular- 

ity in two-dimensional flow may be obtained by separating the 

variables and trying 

F(zjt) = Z(z)T(t) 

giving as a possible solution, 

provided 
72 

_2 
Z„ 

;z _ 

tt 

tTtt + (T - ^Tt = ° 

= constant, independent of z or t. 

. • 
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i 

The first implies T(t) = At ' (in terms of a constant A)and 

this is automatically compatible with the second and third 

conditions when 
Z(z) = A2z 

Y-l 

so that we may take as a special solution of (3.1), 

b 
F(z;t) = - Y-l 2-Y z  t  ' (3.3) (Y - 1)(2 - Y) 

by suitable choice of the constant b which must be positive for 

1 < Y < 2,  Taking v = 7/5 then the parameter z(x,t) is given 

implicitly by 
x - z 

z > 0 j 

+ 5k (i)3/5 
3  z (3.*0 

Confining attention to 

onlv when x exceeds its value when 

• 5 this equation defines z real 

5/8 

at which 

z-^t; = 

az  u 

.1/4- 

which implies a concentration of differing z lines (wave lines) 

and rapid change in velocity at the station 

x . | b5/8t3A 

= x1(t) say. 

The wave line specified by constant z advances with speed 

|f = z + bz"3/5t-2/5 

which is very large near t = 0 and decreases to a constant value 

z, equal to the x-component of the instantaneously local fiuxd 



( 

• 

I 

All-Ill 29 

speed, as t—>-OD .  In contrast, the singular line, which at t = 0 

is crossing the y-axis with co velocity, decelerates with speed 

eventually falling to zero as t—^co .  This speed is 

£ (| b5/8t3A) = 2b5/8t-lA = 2zl(t) 

is twice the x-component of the local fluid located on the line 

at time t.  The instantaneous streamlines are defined by dy/dx = 

q /z so that, regarding t as constant, 

3/5 
£l = 2° dx _ %of4.      bt 
dz " z dz " z z 

therefore 

(t " **B75> 

(y - yj/q~ = t log z + S£ t.3/V8/5 

and 
x = tz + 5& t

3/i3z-3/5 
3 

may be regarded as the parametric equations of the streamline 

in terms of z as parameter, y being a constant determining the 

different streamlines.  Singular points in all such streamlines 

will occur when 9y/0z = 9x/9z = O5 but the curvature is infinite 

and dy/dx remains finite and one valued.  This occurs when 

z = z1(t) and it is seen that no streamline may be continued 

beyond the singular line into the region x jCx^t), corresponding 

to which no real values of z(x,t) exist. 

Also both branches of the x-z curve, corresponding to 

the variations 
0 < z < z-j^t) 

z^t) < z  < co , 

• • je."""*^*'*.' '*"W^
T
-T - 

- • <   v^.'- •     •*-  *•*'. '. —- ' * 
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cannot be simultaneously considered at a given positive time t, 

because this would imply intersections of the streamlines and a 
- 

double valued velocity at the point (x,y,t). 

However, in unsteady motion the instantaneous stream- 

lines do not yield a picture of the actual flow pattern and it 

is necessary to obtain explicitly the equations of the paths of 

the fluid elements.  These are obtained, theoretically, by 

integrating the equations, 

£2 = zfx tV    dy - 
at-zuc,^,   dT=c*o 

the parameter z being given by (3»^).  It is necessary to adopt 

an alternative procedure and to eventually express x and y in 

terms of z, not the time.  Form (].•+) by taking the total differ* 

ential 
dx = g$ dt + |S dz 

therefore the relation between z and t along a particle path is 
I 

given by the ordinary differential equation, for z(t); 

„   ._   3x   ,   6x dz 
1 *       3t       8z  dt I 
kj that is, using   (3»H0  explicitly; 

I ^     +      4.7/3 3/5 I dt; _ t      t      z 
dz      z b 

giving an integration in terms of a constant a, depending on the 

element, £ 2/5 
z  f ao = 5b(f} ^.5) 

Therefore on substitution for t as a function of z; 

» -.  .;• 
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\ 
\ 
i 

3x 
2 

^z    + a 

(z2 * a)?/2   ' 

y ' yo    _ (3.6) 

i 

. 
(5b)^2 q0(5b)?/2        (z2+a)5/2 

I 

are the equations of the particle paths in which (a>q ) determine 
2 

the co  elements and z, the x component of the fluid speed is 

used as fundamental parameter.  The general form of the fluid 

element paths, according to (3.6), will differ according as a 

is positive or negative. 

It is seen that when a > 0 the fluid paths possess a 

cusp at z = 1/2 vci .  Then the element (cc,q ) will generate this 

cusp at time t = 16 b^/a2 along the line x = 6*f/3 h a" 

that is when it meets the line x = 8/3 b?/8t3/4" i.e. x = x_(t). 

When this occurs, the local acoustic speed, is given by 

o       2/5 
a2 = b (£)   =5. H.7) 

t        M- 

so that la| ~  «• v^ = z, (t). Therefore, on the singular line, 

the streamlines intersect this line at the local Mach angle 

M- = sin""1 |S| ; or the normal component of the fluid speed is 
4 

sonic.  In particular it follow? that the singular line only 
I p    o     o 

occurs when the local fluid speed (q^ + z ) > a is supersonic. 
fij 

•*; The  acceleration 

:; z,   + q •• Vz = z+. + S5z    = bz(z    't,f J - bt) 
t — « X 

5/8 -iA 
becomes infinite when z = b  t    = z.. (t) so that, in effect, 

the solution breaks down on and to the left of the line x=x-,(t), 

Any attempt to continue the flow into the region 0 <  x < x-, (t), 

which was previously occupied by fluid in continuous motion, 
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must fail because the field Eqn. (3 A) will not give a real 

velocity for x < x,(t). The parametric equations (3.6) are 

similarly not applicable, and cannot yield real z for real 

X < X, (t). 
A. 

First Solution.  When elements a > 0 are considered there 

are two possible paths. The first commencing at t = 0; 

x = W/3 (5b)  a    continues to move to the right until it is 
5/2  -2 eventually overtaken at time t = 16 b  a  by the singular line 

x = x-, (t) which by that time has reached the station 

x = 6*+/3 b->/2a-3/2[- _ Xl(t)]. The relevant range for 2 is 

0 <: z _< 1/2 \/a . When a < 0, the corresponding fluid elements 

The singular line initially found along x = 0, moving at high 
• 

speed, may be regarded as the result of a uniform impulsive 

pressure applied over this face (the x = 0 plane in three-dimen- 

sional flev) from which compression waves are generated^ These 

waves proceed outwards with ever decreasing velocity, deflecting 

the fluid particles from their initially vertical paths. 

The compression waves precede the advancing singular line 

x = X-, (t) which overtakes the fluid instantaneously moving where 
•a- 

x-component of velocity is locally sonic. At the instant of 

interception this component is abruptly doubled to equal the 

velocity 2 z,(t) of propagation of the discontinuity, the fluid 

being carried along in an ever increasing concentration (density) 

• 

1 
are concentrated along the axis x = 0 at zero time. This diffi- I 

. • I 
I culty _. avoided by confining attention to a > 0 for which at 

J • t t = 0 the instantaneous streamlines occupy the whole half plane 
I : 

x >0 and comprise lines parallel to the x = 0 axis since z = 0. 
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along the singular line.  This process causes the speed of pro- 

pagation to reduce continuously and fall to zero as time increases, 

It should be noted that the advancing singular line cannot be 

considered, as a shock wave; the fluid overtaken has its speed 

discontinously increased but the normal velocity relative to 

that of the front rereduces to zero so that this change does not 

resemble passage through a shock.  In addition the fluid does 

not pass through the singularity but accumulates along the front 

and is carried along with it, leaving a vacuum in the region 

behind. 

7     ?    SP 
2/5 Since p £a' and a = b(^)  , the uniformly distributed 

surface pressure necessary to he applied along the boundary 

5/8 —1/1+ z. -  x, (t) is obtained when z = z-, (t) = b  t    therefore 

P ci_ t   „ 

Second Solution.  When the second branch z-,(t) <  z < oo 

is considered flow obtained is quite different because at t = 0 

there is an intense concentration (high density) of fluid along 

the x = 0 axis, across which it is instantaneously released with 

high speed, expanding into the adjacent vacuum x > 0 (x < 0 can 

be similarly considersi),  At a subsequent time t the singular 

line has advanced to x = x,(t) with ever decreasing speed and the 

fluid released at t = 0 continues to precede the singular line 

also with ever decreasing speed. Unlike the phenomenon for- 

ce > 0, the front never overtakes the preceding a<0 fluid again 

but falls back as time progesses.  This may be demonstrated by 

focusing attention on conditions at a chosen time t(> 0).  At 

this time the front is moving forward with speed 
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v = 2z1(t) = 2b  t '  or t a 2^V' v , and the x-component 

of velocity of any particle a < 0 is z given by t=(5b)  z(z +a)**2 

2 (5b)  z  . Therefore 

k  5/? -M-     5/2 ->+ 
? b5/ v * > (5b)  z 

z > 5  2 v > v. 

It follows, since this inequality is valid for all positive time, 

that all the a _< 0 fluid elements initially concentrated there 

precede the singular line. A similar argument shows that the 
I 

a >0 elements are characterized by z < v, so that considerable 

information is obtained from the curve showing the variations 

of x with a (-00 < a ^MJ^ t""1'2) at any tim~ t > 0. 

This may be obtained by noting that x(a,t) is given j 
I 

jointly in terms of (z.a) by 

o 
3x      M-Z + a 

7^75 - -tf—?n <3-8) 

where z(a,t) is given by 

(5b)5/2  (z2 + a)5/2 

Ir follows by differentiation partially with respect to a 

(t constant) for x(a,t)$ 

3Z2 Sj =-. t(hz2 -a) J* + zt 
3a 8a 

(3.9) 

? (u. -2  n^ 9.Z (M-z^ - a) oz + 5z = 0 
j 6a 

Therefore, eliminating Sz/3c, 

•. 
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g = 4 (3'10) oa    2z 

The subsidiary curves giving the variation of x,a with z are 

first drawn and then combined to give, with the aid of (3»10)5 

the curve x **> a   • These curves have equations 

x = zt + ^ (i)8/5.  a » 5b (f-)2/5 - z2 
j   Z t 

and generate a cusp    at [x-,(t), a-,(t)]   in the   (x,a)  locus where 

xl(t) = I b5/8t3A. ai(t) . VD5At-l/2 

.„(t) - (5b)5/»t-lA;      Zl(t) = b5/8t"lA 

The curve varies slightly with t but it is seen how only 

one  branch may be considered at a time, since for any given (x,t) 

two different values of a, with corresponding different velocities 

cannot be  simultaneously considered.  As t increases the cusp 

a = M-b" 't "u/ ' approaches zero, the total variation of a in the 

first solution [0 < a <  kb"   t-1^2; 0< z ^ z1(t)] being con- 

tinuously reduced as more and more elements are caught in the 

advancing front. A similar state of affairs exists when the 

second solution [-co < a <h\y     t~  ; zi_(t) <  z < +  oo] is con- 

sidered, particles for which a > 0 being removed from the regime 

of continuous fluid flow by the ad rancing front, but the cc <  0 

elements are never reached and continue their motion uninterrupted 

for ail time. 

The variation of speed with time specified by (3*9) of 

elements for any a j -oo < a < + co relative to that of the 

singular line which is z = 2z-j_(t) - 2by/ t '  shows that 



f 
All-111 36 

1. Elements a < 0 always move faster than the singular line 

at any time t. 

2, Elements a > 0 in range i \/a < z < oo initially move 

faster but are eventually overtaken by the singular line 

These results follow because the intersection of the 

singular line curve A with the a > 0 curve B occurs in the range 

The front of the disturbance which expands into the vacuum is 

therefore composed of high speed a  < 0 elements. 

The field equation curve is shown in Fig. 1. The Figures 

3, *+, 5j and 6 are used to draw the particle paths and Fig. 2 the 

instantaneous streamlines of the first solution.  The correspond- 

ing curves for the particle paths of the second solution are 

shown in Figures 7» 8, 9» and 10. 

*f«  Generalization of the Unsteady Simple Wave. When 

the direct extension of the simple wave q(X) was considered in 

Section 2, the combined single equation for the velocity (obtained 
\ 

o 
by simple elimination of a*- between (2.1) and (2.2)) yielded the 

two equations (2.16), (2.17) which could be replaced by an 

ordinary differential equation for the velocity together with a 

partial differential equation for $(\,t).  There were two dis- 

tinct possibilities but both were restrictive.  Either the \-lines 

were parallel (in which case the flows could be treated by a 

more direct method), or, in the case of a non-degenerate envelope, 

the time variation of $(\,t) was linear.  If the preceding method 

is adapted to flows of the type q(X,t), in which the time 
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variation occurs independently as well as through the parameter 

X(x,y,t), by replacing (x,y,t) by (X,9,t) as fundamental indepen- 

dent variables, then the original single partial differential 

equation for the velocity regarded as a function of the three 

independent variables (x,y,t) may be reduced to three partial 

differential equations for q, ©, 4>  regarded as functions of the 

two variables (X,t). As in the simpler one parameter velocity 

field, this reduction is achieved by repeating the two fold 

transformation of (x,y,t) into (\,9,-t), simultaneously using the 

Legendre contact transformation to transform the dependent func- 

tion 9 into $, whilst retaining 9 as a fundamental independent 

variable. 

The reduction achieved is again due to the fact that 

tf>(x5y,t) reduces to a function of 'X,t) only and is independent 

of 9.  Such flows for which the velocity vector, reducing to a 

function of two independent variables (X,t) are sometimes referred 

to as "double waves" but the title simple wave is retained for 

the flows here discussed because the hodograph in the velocity 

plane still reduces to a curve, though this curve may vary with 

the time and generate a surface in the velocity time space0 

The original analysis may be repeated by remembering that 

since q = q(X,t), 
*L _ „ ax 

\ at -\ •at = SU — + q 

in which q does not mean the total time variation of q(X,t) but 

simply the partial derivative with respect to time when X is 

constant*  In the following, therefore, the suffix t is used to 

denote partial differentiation of a function of the type f(X,t) 
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with respect tc time when X is constant and not used to refer to 

the total differentiation with respect to time for which (x,y)are 

constant, except for 9 and X which are regarded as functions of 

(x,y,t). The following revised equations are obtained by successive 

differentiation 

<2> + r • q = 9 (^.l) 

<2>. + r • a  = 0 (^.2) 
A. \ 

9t = $t + r • ci (^.3) 

*tt = *tt + E " %t + (\t + £ ' V\       ihA) 

(
\x + - ' axx)xt + <\t + i • *xt} = ° 

whilst the equations (2.10) for the velocity must be replaced by 

(a2q  - qq  q) • 7X = 2q(qxXt + qt) + 9 

which becomes after substitution for 9^, and VX, X. , 

(a2q, - qq. q) * q. = (2qq, + <DV+- + r • q .)(*.. + £ • q. . ) 
-X    X ~   -X     X   Xt     „^t  Xt     -xt 

- (2qqt + <I>. 4- r • q  )(<&  + r • q...) tT;      ~tt  XA.      -XX 

p 
It is noted that 9, , 9  , and a must continue to be regarded as 

general functions of position and time and the object is now to 

find their equivalent representations as functions of (X?9?t). 
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C+.7) 

The required expressions analogous to (2.13) are 

\x + ^l^j-Oq + Pi^i^Sk s ° 

(L. + A?(\,t)q + Bp(X,t)n  = 0 
~"Xt —   e    _x 

q  + A (X,t)q + B-(X,t)q% = 0 
-tt   J J    -X 

i 
q  + A. (X,t)q + Blf(X,t)q = 0 i 
* ^    J 

where the coefficients A , B are functions of (X,t) only and 

are given by relations of the type 

Al qq = q A~X  "XA -XX 

B, qq  = - q q 
1 -A~X    -A-XX 

therefore explicitly 

qV 
A.   = - -_- 

1 2q ~     ox [qxq    °X   + q    ] 

Bi = - -ax (1°* q2ex) 

A    = i^l ±  [0  +  tan-1 2?X   3 
1       q ©x      ^ qx 

.      qx + q2ex  a . -i q©x A    =  _ ~_ _ [Q + tan x -±    ; 
2 Q2©% 9t qX 

ri 

(h.Q)   i 

(qeX)t  + qx©t 

q©, 

^ 

A . %- ©   + e
2. Stt + 

2J&& . 
3   q©X  tt   t   q   "^   • 

.  . <*XQt " qtQX . 
\ 55: ' 

B„ = 

B, 

q Qx at 

9. 
X 
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The actual computation of these coefficients is best done as 

follows.  With the usual notation for t(©) = (cos ©, sin 9) 

the unit tangent vector along the streamline, 

q = qt(0) 

therefore 
q^ = q .£ + qe,a 
— A     A       A 

*xx = (qxx - qex^ + (2qxex + ^xx* ' 
therefore 

or 

where 

4\aXx+ P<V\X - V\x> + 2'xe + q2exJs 

= (2Vx+ ^V^X 
q  + A1(X,t)q + B1(X,t)a^ = 0 

qj^tt.t) = (qx + q
2©x

2)\ + q2(i-^)x » A. J- A     A  A     q^ 

s 
after some rearrangement 

A 

2 o o  ?  S r      _i q©\ _ 
q Qx .^(Xjt) = (qx + q-©x) — [© + tan ± -± ] 

or,equivalently, 

.    «M a ..-2  °| 
55— rr [Cq  + -trrr] 
\ aX      q ©x 

Similar procedures yield the explicit expressions for the 

remaining coefficients. 
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Scalar multiplication of equations (^.7) by r and then 

using (<+.l) and C+.2) to substitute for the scalar products 

r_ • q ; r • q. gives 

r - q^ = (* - <p)A;L + Vl  I 
j I 

- (<X» - <p)A0 + $%Bp £ " £L  - C* - 9>A2 
+ \B2 

(»f.9) 
£ • q  = (O - <p)A  + $ B 

~tt J   A J  j 
i 

r • q  = (<J> - cp)A^ + $B^  j 

and direct substitution into (U.6) and (h.$)  gives 

X(X,t) + (<J> - 9)Y(X,t) + (<D - cp)2Z(X,t) = 0     (^.10) 

in which the functions X,Y,Z are obtained as functions of £(X,t), 

*(X,t)  only and are therefore independent of cp,  It follows that 

if the field equation C+.10) is to be valid everywhere then all 

the coefficient.*; must he illusory, tnat is 

X(\,t) = Y(X,t) = Z(\,t) - 0 (V.lOa) 

which are the three required partial differential equations for 

q, 0, $ in terms of the independent variables (\,t). 

Explicitly 

Z(\,t) = A^ - A^ (U.ll) 

which is independent of $(\,t). 
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X(X,t)   =   ($xt  + 2qqxx+ B2$x)(^ + B^) 

~   (*tt + 2qqt  +  B3*x)(*xx+ B^)   -   (Y-  1){^•^ 

- $t - W'l qx  + q2q| (^.12) 

Y(X,t)   =  2A2($xt  +  qqx +  B^)   -  A^^ +  B^) 

- A1   ($tt  + 2qqt  + B3$x)   +   (y-  DA^ q (M-.13) 

In general, solutions of the equations (n-.iOa). (^f.ll), (^-,12) 5 

and C+.13) are very difficult to obtain, such flows corresponding 

to the general double wave solution.  The original simplified. 

theory of the unsteady simple wave may be extracted by noting 

that in that case all the derivatives c^ ? a  , q  vanish there- 
«*       \t    ""tt 

fore A0 = A_  = A,   = B„  = B^  = R    - 0 so that 2 3 M- 2 3 if 

X(X,t)   =   (qqx+   *xt)
2  -   V^+Vx3   "  aVx 

Y(X,t)   =  -  A, (X)$ 
-1- tt 

Z(.\,t)   =  0 

The condition Z = 0 is therefore automatically satisfied and the 

additional relations X = Y = 0 reproduce the equations (2.16), 

and (2.17). 

The X-Envelopc When the generalization of the simple 
i 

wave to steady rotational compressible flow it is found that the 

X-lines are concurrent or parallel (which may be regarded as a 

particular case of concurrent lines when the point of concurrency 

:-:.1 
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recedes to infinity) and that in no case is a non-degenerate 

envelope possible.  This is in contrast to the original steady 

irrotational simple wave, for which an arbitrary curve may be 

assigned in advance to b« che envelope of the X-lines from which 

the flow is constructed.  In rotational and unsteady incompress- 

ible flow it is also found that there is no non-degenerate 

envelope.  The simple wave in 'unsteady flow however represents 

a much more general class of flows because it is possible to 

obtain solutions for which the X-lines are neither parallel nor 

concurrent.  The envelope E(t) would be obtained, theoretically, 

by solving for r the equations 

<!>+ r • a = 0 

\\ + r ' 4x\ = ° j 
This would be possible provided a_ q  ? 0  (i.e. A. / 0), the 

XA—XX -1 

exceptional case occurring when the X-lines are all parallel. 

If the lines are concurrent 3 then the point of concurrency znsy 

vary with the time as would the general envelope vary with the 

time. If however they are concurrent through a fixed point, 

this pcint may be selected to coincide with the origin without 

loss of generality and. then $. (X,t) ~ 0 so that * reduces to a 

function of time only. 

To construct the flow it is necessary to draw the envelope 

which is given in parametric form r(X,t) from equations C+.l^). 

On the envelope there is a relation between X and <p given by 

*\X + ((J " <p)Ai + \Bi = ° (H-.15) 

•s 
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in virtue of (U.l1*) and (^.9), it follows that yX and X, become 

infinite on E(t) and that the acceleration 

-gg q (x,y,t) + (q • 7)a = (\  + &  ' vx)ix 
+ 3+ 

also becomes infinite.  The solution cannot be continued as far 

as the envelope where the X-lines coalesce and the velocity is 

ambiguous.  However the flow field of any solution is obtained 

automatically by drawing the X-lines generated as the tangents 

to the envelope.  Along any such X-line, the value of X and 

therefore of q(X,t) is constant and known from (M-,1^). 

The parametric representation of the plane is obtained 

from (i+.i), and (l+.2). 

r(X,cp,t) = [(» - 9)2, - <*>,£] exp | R.(X,t)dX    Ot.16) 
\ K J  -L 

since q ©.. = exp - B, (X,t)dX, and £> = S £,  By direct differ- 

entiation 

)dX -X = " ^XX + Br\*  Al(* " 9)^ exp Pl^J* 

r r = — Q_ exp I B, (X.-c)aX 
cp     X   J J- 

The relation between X and 9 along an instantaneous streamline 

will be obtained by integrating the differential definition 

q .dr ~ 0 where 
dr = i\ dX + r dep 
"*  *"X    ~"9 

therefore 
i\-K + W  + Ai(* - ?)lqdX + q d? = 0 

In unsteady flow however it is the actual paths of the fluid 

elements which show the motion.  These paths arc obtained by 
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integrating the differential equations 

^ r(X,<p,t) = q(X,t) 

that is 

\ ft + % ft+ «t = aa,t) fr-«' 
i 

from which are obtained two ordinary simultaneous differential 

equations for X and cp regarded as functions of t only. 

On integration in terms of two constants (c-,,c9), which 

servp to determine the initial position of the oo  elements, X 

and 9 are obtained as functions of time which when substituted 

in (*+.l6) yield the position vector of the element (c-pCp) in 

the form r(t,c-,,c„). 

Singularities.  An inherent disadvantage of inverse 

methods such as the one here employed is that i. is difficult to 

avoid in advance solutions of the final equations giving rise to 

discontinuities in the streamlines in the physical plane.  The 

velocity may be a many valued function of position corresponding 

to those regions in the physical plane for which the solution 

may not be mathematically unique, but it is possible to obtain 

a physically possible flow pattern by confining attention to 

just one branch of the X ~ r curves.  In the physical plane the 

instantaneous streamlines and particle paths corresponding to the 

different branches usually meet in a cusp? where the acceleration 

becomes infinite and the flow is supersonic.  Each solution can- 

not be continued beyond the cusp locus (limit line) or even up 

to it because such singularities represent a local breakdown of 

the continuous flow tneory on which the flow was constructed. 

\ 
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The fact that, the acceleration becomes infinite where the local 

fluid speed is supersonic suggests that it should be possible to 

replace the limit line by a shock curve, however it is not usually 

possible to satisfy all the necessary shock relations along the 

limit line.  In the simple one parameter field q(X) of Sections 

2, 3j this substitution was precluded because the limit lines 

intersected the streamlines at the local Mach angle, and on 

existing shock theory any shock inclined at the local Mach angle 

has vanishing intensity simply reducing to a Mach wave. 

a;. * 1. 

! 

pt- 

The Simple Centred Wave*  The equations (4-. 11), (*f,12), 

and (4-.13) are so complex that it is desirable first to investi- 

gate the possible existence of flows for which the X-lines are 

concurrent through a fixed point, and defer the general study of 

these equations until Section 5»  There is also the additional 

possibility that the point of concurrency may vary with the timee 

In the simpler case, however, the origin may be selected as the 

fixed point through which all the X-lines pass for all time, then 

3\ = 0 and $ reduces to a function of time only.  The three con- 

ditions X = Y = Z = 0 then give, 

(Y -  D(c2 - q2 - 2*t) q
2 = 2q2q2 

2A2qqx +   (y -  DA^q2  - ^(^  + 2qq+)   ? (i+.l8) 

4 = v3 
The functions Aj_ are given uirectly in terms of q(Xjt), 0(X;t) 

and their derivatives by equations C+,8),  ®(t) may be eliminated 

between the first two equations of (*+.l8) to yield an equation for 

i n 
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i 

: 

i 

q(\;t) in addition to the third equation, A2 = AA .  This equa- 

tion is 

2 2 

2A2qqx + (Y - 1)^ q
2 = A±  |qqt - -i-j ^ (!£.) ]  (Lf.19) 

(M-.18), and (l+,19) are therefore the general equations for the 

velocity for the unsteady simple wave when the "centre" is fixed. 

It is obtained in terms of any parameter \(x,y,t) (for which VX 

does not vanish) which may he taken to be the velocity q(x,y,t). 

The original functional relation q = q(\,t) now simply reduces to 

q = X, so that q^ = 15 q*, = qt = q. . = q . = 0, whilst ©(\;t) 

becomes ©(q°t) and ©\ -  © , ©,,. = 9  , etc. ^;       A.   q5  \\   qq' 

Equation (*+.19) now reduces to 

q A. 

where 

:A2n + (y - 1)AU q =  -  ~ 
'  q    T 

q2 = 1 + q2©q2 

9
 (   "2, (q ) i at N^ 

^.20) 

P 

1 + qV 

q w 
~ [Q + tan_1qe ] 
3q L q 

1 + a2© 2 
s (^.21) 

A0 - 

A. 

q2© 
^- {.© + ban qw j 

©2 + wt 

q 

q©  » 

9t 
A'!   qT 

1 
1 

Equations (^,18) and (1+.20) now become two partial differential 

equations for the single dependent function ©(q$t), q now being 

regarded as an independent variable.  Thus it appears that the 

flow is overdetermined.  The above simplification of the general 

\  ** " . .-•»-• 
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i • 

i 

theory may be obtained directly by resorting to the equations 

(2.1) and (2,2),  It should be noted however that this direct 

approach is only possible when the \-lines are concurrent through 

a fixed point, and may therefore be considered as radii through 

the origin when the current polar coordinate r (the radial dis- 

tance) is of no consequence to the velocity £_,  It is not capable 

of direct generalization to reproduce the more general equations 

(*+,10a) for which there exists a time varying envelope.  In view 

of the presence of three equations for just two functions ($,9) 

or, in the simpler caue, „wo equations for Q, these equations will 

be established in the simpler case, by a more direct method. 

Having thus verified their validity, it will be then justifiable 

to return to the general equations (M-.ll), (1+,12), and C+.13). 

Direct Procedure of the Simplified Case.  Let u,v be the 

components of velocity along and normal to the radius vector 

drawn from the origin, d the radial angle and i|> = Q - d the angle 

q makes with the radius vector.  Then u = q cos 4), v = q sin ^ 

and the general equation for the velocity, 

m 

Ssc' 

Hi'--' 
it. 

a^(up + ii + I vd) = q(uqr + ^ Qd) + 2qq + <p 

reduces to, since r is of no consequence to q(dst), 

a^(u + vd) = vqqd + 2rqq + r<p 

that is, 

(a - q )qrt sin \|i +  a q9 cos ^ = 2rq<3 + rep (J+.22) 

Now since q(d,t) is independent of r 

*U 
r> ** " 
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reduces to 

cp(r,d;t) =  q • dr = q • r + $(t) 

9 = C'(t) + rq cos ty 

Also the condition v»q = °> i.e., v = u gives 
A— o 

cot TJJ = qQ 
q 

from which by differentiation is obtained 

(*+.23) 

q9 + q(©  + qO  ) = - cosec iJ>Q 
q     qt    qq 

regarding 9(d$t) as a function of (q;t) so that © 

etc.  Therefore 

= o q + e+i 

I 

• 

•:•• 

q[q9  + (1 + cosec2*^)Q ] + q9  +9  cosec ^ 
qq q     qt   t 

= 0 

Similarly 
q [q9  + (1 + cosec ^)9 ] = cosec"i|) 
d  qq q 

The expressions for the time derivatives of 9 are 

q> - $.   - rq9    sin  il> 
* t 

9 =  $      + 
A(q;t)r  sin *«J) 

tt;       qQ       +   (1  +  cosec2<J0© 
qq q 

after successive differentiation and substitution in the resulting 

expressions of q, where 

A(q;t) = (9, cosec2i{) + q9 ,)2 - q(q9  + l+cosec2T|»#©M) (9^+9, coti|>) 
w q Xi qq q   ^ ^  t 

and the expression for the acoustic speed becomes 

2 

Y~TT = 2" (°2 " q2) " *t 
+  PqQt 3ln * 

*t.i 

i* '" -;  •• M 
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When these expressions are inserted in (4.22) and the coefficients 

of (1 ; r : r^) equated to zero there results the three relations 
ri 

(Y- DCC* - q* - 2* ) ~ 2q^sin'^ 

(Y-1)0+ cosec ^ + 2(q0 .+©. cosec2^J)=q"1$  (qO +l+cosec2^»© )  ' 
qt  t tt  qq q   ' 

I 

A(q;t) = 0 (4.210! 

which may be reconciled with relations (4.10) by noting that, in 

(4.21), since d = © - ty =  0 - cot q© = Q •; tan"1aft H constant, 
q * q ' 

then o / 
2, q©   ,   + ©^  cosec \li ! 

A    =  cosec U'_ d     -       qt t T 

2 q  cot ^ 

A    =  cosec**     d     = ^LO. 
1       q  cot  t|)      q 

q2© 
Q 2 

i-   (1 + cosec \|0©c 
> (4,25) 

;• A     =  tan  r|»(©       + ©*   cot   i)>) A.= ©     tan vb 

' and 
A(q;t)   =   (A0   -  AAJqV 

13 q 2 

Equations   (4.2^-)  therefore reduce  to 

(Y  -  D(c2  -  q2   -  2<I>) cosec2*  = 2q2 

(Y - 1)A, cosec^ + 2qA^ = A $ 
"+ 2   1  tt 

(4.26) 

A2 " A1A3 
= ° 

These coincide with (4*18) since, in the original notation, 
2 2  2 2 

q    = 0,  and £    - 1 + q ©    = cosec *  , 

"SI '^ 

| "Plfrl •*•«••'••   "S*:******* 
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5.  The General Case.  The following analysis deals with 

the case when the parameter lines do not necessarily possess a 

degenerate envelope. The relations (M-,21) are transformed to 

give, in terms of p = ©z; q = ©t 

Al = J {P^1 + P2) + ezZ}
e~2Z A2 " I  l^1 + P2) + 9zt} e"Z 

A, = M pq2 + ©., I A, = 1 3  p I. H   tt j h      p 
i 

since z = log q; q9 = ©z = p. Similarly the expressions for the 

functions B^j C+.8) become, 

- ez
Bl = i + 2ss      _ 9-

ZB  = !it 1      P 3   p 

1   + 97t -Z     n - Bo = Si      - e ZB, = a d p ^  p 

where q now denotes the derivative ©+., and is not to be confused 
t^ X,' 

with the total fluid speed now denoted by e . 

The angle cf which the parameter lines make with a fixed 
s 

direction 9 = 0 is given, apart from a constant additive angle. 

d = © + tan""1"© 
b* -1, 

z 

that is 
d=6+ tan-1p 

since T, the angle at which the streamlines intersect the para- 

meter lines, is given by 

cot r = ©z = p 

and d = © - T. 

ri^ 

J   it x\ 
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Solution of the Velocity Equation.  Of the three funda- 

mental simple wave equations C+.ll), C+,12), and (*+.13), only the 

last two involve <J>(q;t).  The relation (M-.ll) involves only the 

velocity and is independent of $, therefore it is possible to 

obtain general properties of the flow predicted by the common 

equation (^-.ll) for any possible form of *(q;t).  (L!-.ll) 
p 

(Ap = A-j_A^) gives for the equation for ©(zjt), 

1 . r ,     _/i , -2- 
£9zt + * (1 + P

2)]2 = [0tt + pq^l • C e7.z + P(l + P*)] zz 

which becomes 

(Qzz6tt~azt) + Pcl2ezz
+p'1+P2)stt'2ci(1"fp2)Szt-<l2(1+P2)=0  (5,1) 

- 

which is equation of the Mange-Ampere type.  It is non-linear 

but the second order terms of the second degree occur only as the 

Jacobian 6(p,q)/5(z,t) = ©z2©4.+. - ©  therefore it can be aealt 

with by considering the characteristics which are given by 

(cf. Forsyth, Differential Equations: p. ':85)« 

i 

dp + p(l + p^)dz + Xdt 

dq + Xdz +  pq^ot = 0 

0 

where X is given by the quadratic 

X2 - 2Xq(l + p2) + q2(l + p2)2 = 0 

that is X = q(l + p ).  Thus the equation for 0(z;t) is always 

parabolicj the roots X beinj real and coincident. 

The coincident characteristics are given by 

R3 
B tt * 

• . 
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dp + p(l + p2)dz + q(l + p2)dt = 0 

dq + q(l + p^)dz + pq2dt = 0 

53 

which may be combined to eliminate dz in the form 

2 
qdp - pdq + q dt = 0 

so that, if u is an arbitrary parameter of integration, 

t + £ = u 
q 

Similarly, elimination of dt yields, 

pqdp - (1 + p2)dq - q(l + p2)dz = 0 

(5.2) 

so that on integration in terms of another parameter v, 

2 2z 2 
q e  = v(l + p ) (5.3) 

•S1'- • 

It follows that the "Intermediate Integral" of (5.1) may be ob- 

tained by taking any arbitrary function of (u,v), that is 

F(u,v) = 0 

which, being an equation (involving p,q) of the first order may 

be further integrated for 9(x,t), if desired by Charpit's general 

method for such non-linear first order partial differential 

equations. 

The general intermediate integral may be written 

v = f(u), 
q2e2z = (1 + p2)f(t + £) (5M 

where f is arbitrary.  However, it is possible to evade the 

*L. 
r> tv i   J 
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general method  by solving   (5.2),   and   (5.3)  for p$q as functions 

of   (z,t,u5v)   giving,   sinci-   p  =   q(u  -   t) , 

q = sz 
ve      - v(u - t) 

v'v •   (u - t) 
P s •  ,        ——-z 

ye      - v(u - t) 

where actually v = f(u), an arbitrary function of u. 

Then insertion in 

- gives 

so that 

d9 = pdz + qdt 

dQ _ (u - t)dz + dt 

Vv " f 2z vet- - v(u - t) 

0-c = cos"1 \ (u - t) </v e~zj 

therefore 9(z,t) is given by 

or 
co? (0 - c) = (u - t) s/v  e 

q cos (0 - c) = (u - t) Vv 

IP* H 
m 

t 

where q now denotes the fluid speed. 

If c, v are regarded as arbitrary functions of a single 

parameter \(= u) then 

q cos | 9 - (p(X)j = t|>(\)(\ - t) (5.5) 

is the "complete" integral, from which the "general'1 integral is 

obtained by partial differentiation with respect to X, 

R "t* * . - -v»jt\ 
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cp'(X)q sinjo - 9(\)[ = (X - t)v|>»(X) + \|>(\)      (5.6) 

and eliminating \ between (5.5), and (5.6) [definitely chosen 

functions cp(X), i})(X) would be necessary in actually carrying out 

this procedure]. 

It follows from (5>5)   in terms of z = log q 

cos [9 - cp(>0] =^(X)(X - t)e"Z (5.7) 

therefore partial differentiation with respect to z gives, after 

considering the corresponding variation of X(z,Q,t) which accord- 

ing to (5»6) vanishes, giving 

therefore 

reduces ;o, simply 

o.. = cot [0 - cp(\)j (5.8) 

d = 9 - cot" 9 z 

ci - cp(X) (5.9) 

(choosing principal value for convenience), c5 denotes the 

inclination of any local parameter line (along which 9,q are 

instantaneously constant) to G = 0, therefore these lines will 

constitute a system of parallel lines if cp(X) reduces to a con- 

stant.  Since in this case the left hand side of (5.6) vanishes 

and the right hand side then merely implies that t is an arbitrary 

function of X, then \  is an arbitrary function of t so that (5*5) 

gives 
q cos(9 - 60) = P(t' 

P(t) an arbitrary function of t and 90 a constant. 

The combination of (5>5),  and (5*6) is not the most 

|\ t* "* ; "*?: -* 
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general solution for 0(q;t); a more general solution may be ob- 

tained by applying Iraschenetsky1 s method by inserting in (b'.D 

the solution     +z 
e  cos (© - c) = b(a - t) 

and allowing the parameters (a,b) to vary, regarding c as a 

function of (a,b).  However attention will be confined to the 

class of solutions obtained by eliminating X(q^t) between 

q  cos(G  - X)  = cp(X)[ij>(\)   -   t] (5.10) 

q sin(0 - X)  = cp'00 Ji|>(X)  - t I + <p(\)tJj'(X) (5.11) 

i 
which are obtained from (5.7)5 and (5.8) after a slight change 

of notation.  With this notation, X becomes equal too ( equal the 

inclination of any parameter line to © = 0), and is defined 

implicitly in terms of the arbitrary functions cp (X) - I|J (X) by \ 

means of 

q2 = (cp2 + cp2)G!> = t)2 + 2<p9 ,|, ty - t) + cp2^2     (5.12) 

e 

obtained from (J>.10), and (5.11) by elimination of ©.  It is 

always possible to rewrite the system (5*5),   (5.6) in the form 

(5.10), and (5.H) provided that, in the original system the 

function <p(X) [occuring in (5.5),  and (5.6)] does not reduce to 

a constant, 

Since 0 
q© = cot a = ©z 

q©, -    cp(X.) cosec a 
t > (5.13) 
a = © - X 

i    i 
X(q;t) = © - cot~xq©   i 

q  J 

••   :       ••*»: . s • --, ., 
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Mi: 

I- 
I • 

then by differentiation 

q©  = - (q cot a - X Jcosec^a 
zz     *        q 

q2e 
tt 

9 cosec  ct cot a -*• q cosec a(9x 
+ 9 cot  a)X V, 

qQ      = -  cosec a    -I © cosec  a - qX   I 
zt uT t J 

(5.1*0 

The partia.l derivatives  of X(qjt) may be  obtained from  (5*12), 

(5.15) 

giving 
LAX    = K 

LAXq  =  q 

where 
L  = cp^(^) -  t)   +  yty 

K  =   (cp2  +  9^)(T|J  -  t)   +  99x^x 

A  =   (9 + ?xx)(t|>  -  t)   + 2o)x^x +  qn|> 

so that   (5.11+)  becomes,   since, 

,1 
q  cos   a =  cp(i})  -  t) 

f 

q  sin  a = 9X(9  -  t)  +  an\> 
X 

then 
q = IT  + <T(iJ) -  t) 

L3A92Z  =  q2[l  - 9(\|»   -  t)A] 

J 

J L3A©   ,   =   q2[X -  coAl r 
> Zt '    " 

; 
I L3A9       = K2  - 93(^  -  t)A 

(5.16) 

o.i/; 

(5.18) 

^ '**- 
-     -, -«, 
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* 

I 

The expressions (V.21) for A,, 

qk->   = cosec a tan a \ H  1 q 

qA2 = cosec a tan a \ 

qA. = tan a cosec a(<p» + ep cot a)\. 

qA> - cp tan a cosec a 

become, with the aid of (5.1?), and (5.15) 3 

L^AcpO|>   -   t)A     = q"      j 

L2Acp(\p   -  t)A2  = qK 

L Acp(\J)  - t)A    = K2      i 

(i|)   -  t)Ai+ = 1       j 

Al  = ^ = fj B _\_ =  L_  
q"2"       qK      K2       L2A9       L2AcpW>   -  t) 

therefore 

It is clear from (5.19) and (5.21) that, 

A     0       5 2. 
ia. K2. ,.At 
Al " q2 " X? H    q 

and that, from (5.15)> 

therefore 

Also; 

XX  - qV = 0 
q  ^ t 

A0X
2 - A-.X2 = 0 

1 
LqQ = jp^ - t) 

L0„  = « 

+ a29a2 - £ 
q 

1 + q Qq 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

IT J 

^J!* 
- -• • 
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Relations Between AJ,BJ.  If z = log q then 

" 2A   ,•  „2  « 
* Al = X + P2 

+ 0 
zz 

z 

1 A3-8?+^ I   -*       z 

, V1 + Qz> + Qzt 1 qAp = 

•t   0 

0, 

r»        0 
! - qBl = 1 + ^ 

1.2B, -2tt 
L q3   ez 

_ et -I B = - 
j> 

J 

• 

• 

• 

Hence 

j\ = q(9^ _ Al) 

B3 - q(0t - A3) 

B2 = q(eq0. - A2) 

B^ = - qA^ 

(5.24-) 

There Exists the Following Identities.  Tf we eliminate 

(©,-,»©a.) between equations (5.2s-!-), using 
q o 

then 

that is 

(qO^CqO2.) = (qeq©t)
2 

(qA1 + B1)(qA3 + B0) = (qAg + Bg)' 

(B^B^ - B|) + q2(A-,A^ - Ap) + q(AnB^ + A^ - 2A9B5) = 0 ^"3  «2. i-i u-j T «.TJ3T  — c:npjDp, 

Also, directly, 

n 
I(A B^+A.Bn-2A9BP): 
q 1 3 3 1 d d 

S 
| 1 (B^-BJ) = (AXA3 A|) - (A1^-2A20q9t+A3e^) 

r (5.25) 

1-  — 
. • i -^T,T'  •" 
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The Linear Equation for $(q;t).  The two Monge-Ampere 

equations C+.12), and C+.13) are both equations for $(q;t) in 

which the coefficients A1, B. are functions of (q,t) and ©(qjt), 

the solution of (5.1) as expressed by the system (5*10), and 
- 

(5.11).  The final expressions for the coefficients Aj_ are given 

in equation (5.21) in terms of arbitrary functions <p(>,), ^(X) of 

the variable \(q;t) (given by (5.12)) and the functions L(X;t), 

A(X;t), K(X$t) (given by (5.16)).  The equation C+.12) is a 

general second degree Monge-Ampere equation, but C+.13) is of 

the first degree in $(q;t)t  It is preferable therefore to study, 

first, solutions of (M-.13) and then return to (W.12) to obtain 

any possible solutions common to both these equations. 

The equation C+.13) may be written 

2 
A0$  -2A9$  +A,<J> .+fA0Bn+A_B^-2A9Bo)

(i> =2qA~+(Y-l)A, q 
3qq  2qt 1 tt  3 1 13 l  2 q H  2     ^q 

or, in virtue of (5.2 5) 5 since A-^A^ = A|, 

A3$qq-2Vqt+Al°tt+q\(A3e^2A2Qq^+Aie?)=2a*A2+^-l)A^  (5.26a) 

and, using (5.21), and (5.2J) 

K2<5     -2qKd>   .+q2<I>     +q<P   (KG  -qO.)2   = q2 X 2K+(Y-D«A {• qq qt tt       q       q       t \. ' J 

I But from  (5.23) 

KG    - q0t = -2L [K(I|I  -  t)   -  q2]   = - Ok 
*£• q u      qL ^ q 

after simplification with  (5.16). 

V.' 

.. f:    'ft- 
. »; .-'•     r.*a-.  .r. 
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The final equation for $ is therefore 

K2S> , - 2qK*  + q2*tt + q>N£ 1 <P = q2 {2K + (f  - i)9A}  (5.26b) 

This equation is parabolic, the coincident characteristics being 

given by       2 ? 2 2 
q^dq^ + 2qKdqdt + K dt  = 0 

that is 
qdq + Kdt = 0 (5.26c) 

which in virtue of (5.15) may be written 

X dq + X^dt = 0 
q     t 

Therefore the characteristics coincide with the curves 

X(q;t) = constant (6.27) 

Form (5.12), these \-curves constitute the one parameter family 

of hyperbolas 

(<p2 + 92)(^ - t)2 + 2c?cpx^x(i|) - t) + tp24'2 = q2 

in the   (q;t)  plane.     The  subsidiary system of the equation 

(5.26) is 

K dPdt  + q2dQdq =   [q2(2K +  f - 1   ?A)   -   ^H^Pq"1 ]dqdt 

R 
where P r- $ ; Q = <P . With the use of (5.26c), this system reduces 

&- to L .0 

;S - (|) dP + dQ + —^> Pdt -  (2K i- Y- 
1(PA )dt   (5.28) 

Since X(q?t) = const, are the characteristic curves, it is possible 

% to integrate the system (5.28) regarding X, <p(X), \|>(X) as con- 

"m    ' stants. 

;fi ***- • ""*' •' 
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v.. 

- 

i 

m> 

For this purpose (5.16), and (5.12) give 

dK _ 2   2 

- £a - K 
dt  q 

Then 

therefore 

«2 A <$ > -« $ - * it 
q3 £ (|j « K2 . Qa(ta + f2, „ _ ^ 

Insertion into (5.28) enables the integration to be performed 

giving TCP [2K(\,t) + Y - 1 cp(\)M\,t)]dt + C 
1  o 

where the indefinite integration is to be performed with \  con- 

stant, and C is a constant of integration.  The intermediate 

integral of (5.26) is obtained by making C an arbitrary function 

of \, therefore      v 

t    q  4 
(5.29) 

where 

-F(X,t) = JKY + 1)9"" 
+ 2cp£ i- (y - 1)9«PXJ(* ~ t) 

+ cp(2Y9x9x + Y - 1 9\x)( 9- t)  (5.30) 

This intermediate integral is linear in O and has the subsidiary 

system 
d$ dt _ SBl -      

1   - K  C(\) + F(Xst) 

E r 
in which \(q$t) is still given by (5.12).  The first of the 

equations implies 
qdq + Kdt = C 

which (cf, equation (5.26c)) defines the original characteristics 

1 *** ' •'" • " • -*r .-..  :.••.- 
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already encountered, and may be taken as a first integral of 

(5.29) 
\(qjt) = constant 

and therefore this condition may be employed in conjunction with 

jj$ = C(\) + F(\;t) dT 

to yield the second integral of (5.29) (by partial Integration 

with respect to time with X constant) in terms of a constant D. 

r 
<B(q$t) = - C(\)djj - t) + j F(X;t)dt + D 

u 

The general integral of (5.29), and therefore the complete inte- 

gral of (5.26), may be obtained by making D an arbitrary function 

of X, so that 

<5(q;t) = D(M - C(X)0|> - t) + E(X)0|> - t)2 + G(M0|> - t)3 (5.3D 

• 

where C(X)j D(X) are arbitrary, and 

I 
G(X) = J [(y + 1)92 + 2cpg + (Y - 1)99X\

] 

E(X) = J cp[2ycp^x + (Y - i)^^! 

The Monge-Ampere Equation for <£>(q;t)»  The relations 

(5.10), (5.11), and (5.3D define ©(q$t); *(q;t) in terms of the 

arbitrary functions cp(X), i|>(X), C(X), D(X) of the parameter 

\(q;t) given implicitly in terms of <p(X), 4(X) by means of 

q2 =  (<p2 + 92)(1!J - t)2 + 2cpcpxlj>x(4  - t) + cp2^2 (5.32) 

It is necessary to find, therefore, if it is possible, by suitable 

choice of the.se four arbitrary functions, to satisfy the additional 

'**4**  * W.A 
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relation (U.12) between o>, 9.  This relation 

(*,q + BA)(*tt + B3*q> " %t *  B2*q + 2«><*qt + B2*q> 

- q2 + (Y - l){sl^! - »t - B^oJ (1 + ,
2
92) = 0 

may be written 

qq tt   qt     qt   q 3 qt    *   qt   1 tt      2 q 

+ (B^ - B|)«2 - q2 + (Y - 1) {--y-3^ 

- «. - B,« > (1 + q20 ) = 0 
t   ^ qj    H q 

Like equation (5»D this is a Monge-Ampere equation for QCq^t) 

in which the coefficients are functions of q and Q(q;t) as well 

as (<£>;<£, ), since the second order terms of the second degree 
q t * 

occur only through the presence of the Jacobian 5 (<J> 5$. )/8(q5t) 
2 = O <£., - <3> . »  This Monge-Ampere equation may be reduced qq t"   qt 

slightly by using the relation (5.1) (A, A = A_) for 0(q;t) and 
I 

the relation (J.26) for a>(q;t). 

Substitution of the expressions (5.2*0 for BJ enables 

the equation for 0 to be written 

I 
I *qq*tt  - *qt  ~  2*qt   +  *V°S%  "  28qVqt  +  •tt* 
I -  "V^qq  "  2A2°qt + AAt>   " ^^t  ' V* 

2-2 

-  ^q(AlQt  -  2A29q«t  + Vq°   "  ^   +   (Y "  1){L-4^ 

"•t + «Vq}(1  ^q0   =° 

Now using directly the linear equation for <E> (equation Cr;.26a)) 
1  . 

this may be reduced to 

K >» • • 
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*    &      =   $2     -  2q®      + q<£ (©?$      - 20 0  *      + ©2<I>    ) 
qq tt qt qt q    t qq q t qt        q tt 

2 2 
-  q2(l  + 20qetS>q)   +  (Y -  1) (c     "  a    - $t](l  + q2©q)  = 0 

(5.33) 
that is 

2 2 2 
(*      + q6$  )(<£>      + q9,3>  )   -   (4>  .   + q© ©4    + q) 

qq q q       tt        'tq qt q  t  q 

+ (Y -1) {si^- - \} ci+ ^} = ° 2 2 ^   „ 2^2 
; 

(5.3*0 

which does not contain, explicitly, any of the functions (A^,B.) 

nor the second derivatives (©  , © ., QAI)  but only (© « ©.)• 
qq7  qt7  tt Q  t 

The equation (5»33) (or its equivalent (5.3!+)) is not 

parabolic. The characteristics will be obtained by first finding 

the roots of the equation in a, 
i 

/   2     2 ! 
[X2   -  2q(l + ©q©tS>q)|i  + q2(l  + ©q©t

f5q)2  =   (Y-Dj—^ -\\(1^Q2) 

(again cf, Forsyth, Differential Equations, p. 485) that is, by 

the roots a, 
'22 

[M  - q(l  + © ©.d>  )12  =   (v -  1)-/ c-   .",5L, -  Q.   f (1  + a2©2) Lp      H qtq'J • -  I       2 tjs qJ 

Now the equation  (5.3*+) will be parabolic  only if 
i 

Q    = \  (c2  - q2) 

or too 
*(q;t)   = J   (c^   -  q^)t   +  F(q) 

but resubstitution into (5.3^) gives, since $,   =  $  + q = 0, 

$ 0 © = 0 
qq q t 

«<- - -v ,--_. 
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Q. - 0 is a degenerate (steady) flow whilst $ . <£  cannot vanish 
t <l      qq 

and he simultaneously compatible with <E>. = 1/2(c2 - q2). 

In the general case it would be necessary to insert in 

(5.3*+) the previous solutions for ©(q;t), <&(q,t) in terms of the 

functions 9(M, ^(M, C(\) and D(\) which must therefore be 

chosen to satisfy together the resulting equation. This procedure 

would be very complicated, however- owing to the expressions 

for ©_, 0+ and the derivatives of X(q;t) invoked during the 

substitution.  Certain important consequences may be obtained 

from a direct consideration of the general solutions for © and 

<3> without any further regard to the conditions to be satisfied 

by the four functions cp, vji, C, D.  Therefore we shall not carry 

the general theory any further but merely state that any solution 
1 

of a generalized simple wave must necessarily be of the form 

predicted by equations (5.10), and (5«3D« 

Concurrent Parameter Lines*  If the lines <&„  + r • q =0 ——_——___________________ q   _   _»^ 

are concurrent through a fixed point, which without any restric- 

tion may be taken to coincide with the origin r = 0, then $ 

reduces to a function of time only and equations (5«26b) and 

(5*3l+)  reduce to 

*tt = 2K + (Y - 1)?A 

q2 = (Y-l){£___^-OtJa
2 

q 
2  ° 2 where, from (5.23), q = q~/L  , therefore 
q 

2   2     2 
$ _ _______ _ _____ 
t     2     Y - 1 

•<.»„ • 
4»l**:*!.--~~.~.:-  j,."---  *— 
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Inserting in these expressions for $^; $t+ the values of L, K, 

A in terms of <p(X), \J)(X) as given by (5.16) gives 

!.• 

2cp 
*.  =  ^ < 

} 
9^(\|» - t) + (jnjj. V 

tt  Y - 1 

Now assuming that X does not reduce to a function of t only 

(otherwise (5.12) will give the contradiction that q is a function 

of t) the above simultaneous expressions for $rt> which is a 

function of t only, must simply be of the form (a + bt), a,b 

being constants independent of X or t. 

These give the four conditions, in terms of constants 

(a,p), 
(y + D? + 2?£ + (Y - D99xx = a 

2Y?x^X + (Y ~ 1>9^XX = P 

I • .2 
29x = (Y - Da 

299x^x = (Y - DP 

I 
These equations are clearly incompatible,  The third gives at once 

®XX = ^ anc* 
cp(X)  = + X   J2SX - 11 + cpQ 

which enables  the first tp be reduced to 

(Y + 1) {90 + X J^~l\   +  (Y - D«    = o 

which is an impossible relation, even if a = 0 then 9 = 9 = 0» 

1 It is concluded that there is no unsteady generalization of the 
i 
H  .       simple wave foi- which conditions are instantaneously constant 

V: . * 
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along a series of straight lines radiating from a fixed point. 

However, this result says nothing about the possibility cf lines 

concurrent through a moving point. 

Oscillating Flows. The principal possible application 

of the preceding solution would be found if it were possible to 

choose the four functions 9, ijjj C, D in such a way that the time 

variation of the deflection function 0(q;t) was harmonic. Thus 

consider a flat plate whose equation is written in terms of the 

parameters a(t), n(t) (the unit normal vector) in the form 

a + z  • n = 0 (5.35) 

then the boundary condition to be satisfied on this plate is 

(•=£ + q • V)(a + r • n) = 0 

giving 
a-fq»n-rr*n = 0 (5.36) 

In addition there is the field equation, valid everywhere, 

%  + £ ' 3 =0 (5.37) 

In the first place it is noted that the line (5.35) cannot 

instantaneously coincide with a parameter line of the family 

(5.37), except for the case when (5.35) simply represents a 

translational oscillation of the line with no pitching (i.e. n 

= a constant vector).  For otherwise (q,Q) would not be constant 

along such a line, as required by the boundary condition (5»36) 

when n = 0.  Thus in the general case it is possible to eliminate 

r from the equations (5«35), (5.36), and (5-37) to give 

f. '<*» « 
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*«(aAS) 
= - a(nAa ) f (a + n -   q) (n q ) q ~A~        A q A "A^q 

(5A0) 

If n = (cos a, sin a); a - a(t) = wt and 

• 

then 

q = (q cos 0, q sin ©) 

q = (cos © - q© sin Q,  sin 9 + q9 cos ©) 
\ H q    '        H q 

Therefore 

|n q i = sin (0 - wt) + q© cos(© - wt) 
A-q Q 

n • q = q cos (9 - wt) 

• 
n q  = - w[cos(P - art) - q©_, sin(© - wt)] 
A q 3 

the required condition (5»*+0) becomes 

u©    = wa[cos(© - wt)  -  q© sin(© - tot)] 
4 q 

-   [a + a   cos(© -  wt)]-[sin(© -  wt)   + q9 cos(9 - wt)] 

Now 
q©q   = itf   -   *>   =   cot(0   -   X) 

q  cos(© -  X)   =  cpC4*  -  t) 

q  sin(© - X)   = L 

and  if a = aQ  sin wt then 

w3>    = - wa  [sin(© - 2wt)  + q©  cos(© - 2wt)'J 

- q cos(9 - wt)[sin(© -  wt)  + q© cos(6 -  wt)] 

finally, on inserting q© = cot(© - X)} 

- y*fy^    » 
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sin(9  - 2wt)   + a© cos(S 2u>t)  - S2l2:JlJ!^l = 31 cos(X - 2wt) 
* <1 sin(O-X) L 

sin(9 - wt) + qO cos(© - wt)  - f- cos(X - wt) 
q L 

q cos(9- wt) = 9 (^  - t)cos(X  - wt)  - L sin(\  - ut) 

therefore since 4»   = <&^X    = ^\(^T) 

- u®\&~    - wa cos(X - 2wt)  + cos(X -  wt) J cp(i|> - t)cos(X -  wt) 

- L sin(X - wt)\ 

giving 

- w$%A~    = [ wa cos  X - 4* L sin 2\ + \ tp(\b -  t)cos2\] cos 2wt 
h. O d cC 

+   [wa sin X + 1 L cos 2X + 1 CDNJ -  t)sin 2X]sin 2wt L     O P 2 

+ | q>OI> - t)        (5AD 

Now having regard that the expressions (5.3D for $ and (5.16) 

for A are simply (finite) polynomials in the time with coeffi- 

cients functions of X , a representation of the type (5.^1) for 

$ can only be possible if both the factors of the sin 2ut, 

cos 2wt terms vanish identically in X»  It is clear that this 

is never possible except in the trivial case a = cp = 0, giving 

also q = L = A = 0. 

In the exceptional case when n = 0 then (5.3?)> (5*3?) 

give, since they must represent instantaneously coincident straight 

lines, 
aq ^ ®n 

where n is a fixed vector. Therefore q is parallel to a first 
-q 

vector and the system of lines of constant velocity, lines (5-37)j 

:' 

r, **» - - -. 
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constitute a system of lines perpendicular to the fixed direction 

of £. The required expression for $(q;t) then reduces to, if 

f(t) is an arbitrary function, 

2 *(q;t) - -£. -f^} + f(t) 

Possilbe flows falling into this pattern are dealt with in the 

next sectiont 

6, parallel Parameter Lines* This section considers 

the class of flows which fall into the analytic form c^CXjt) but 

which vcre automatically excluded in the analysis following 

equation (5.10),  Such flows will be shown to be characterized 

by the velocity being constant along a series of parallel straight 

lines parallel to a fixed direction, and the component of veloc- 

ity in this direction is instantaneously constant throughout the 

-/ .       flow field and is a function of time only.  These represent a very 

restricted class of flows and it is concluded that the previous 
! 

analysis is always applicable, except in the present cases for ! 

which the parameter lines degenerate into a system of parallel 

lines. For completeness the present analysis shows the procedure 

***• 

to be adopted in this special case,but details of the flows are 

not discussed. 

The analysis following (5.10) was performed on the 

assumption that the arbitrary function <p(X) occurring in {5*7) 

did not reduce to a constant.  Otherwise it is not possible to 

w take cp(\) as the current parameter to replace X and rewrite 

(5*7) in the form of (5.10).  If <p(\) is a constant, which may i I 
. • 

s t 

M  **;*-> .*•    «-.    -. --- «*?«**5**v t.qgWMN«M/ B3W*  -i-  v "- 
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clearly be taken as zero, then (5»7) become? 

q cos 9 = (X - t)^(X) (6.1) 

from which a more general solution for 0(q;t) is obtained by 

partial differiatiation with respect to X, 

0 = IJJ(\) + (X - t)^'(X) (6.2) 

and eliminating X between (6.1) and (6.2), Equation (6,2) implies 

simply that, since \jj(X) is arbitrary, X is an arbitrary function 

of time.  Therefore (6.1) gives 

q cos 9 = q0(t) (6.3) 

• 

q (t) being an arbitrary function of t.  It follows by direct 

differentiation that, 

9 = q9 = cot 9,  q9 = - q (t)cosec 9 (6.10 

9 „= - cosec 9 cot 9 zz 

Qe  = ql(t)cosec^9 zt   o 

'tt = - qq (t)coGec 9 - qQ(t)'
1cosec 9 cot 9 

The expressions for A.., Bi becorr ome 

A = A = 0,  A. = 
q0(t) 

A,  = 
% q0(t) 

Since A, = A2 = 0 it follows from (*+.8) that 

9 + tan" q9 = constant 
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• 

and the constant is not even a function of the time.  Therefore 

the isovels constitute, at ail times, a system of parallel lines 

parallel to a fixed direction.  These flows could then clearly 

be obtained by a more direct method in which the velocity (but 

not the potential or the acoustic speed) is independent of one 

coordinate x(or y). 

When the above values for A. are inserted in the linear 

equation for $5 equation (5.<--6a) it reduces to 

§      + 
qq q(q2   -   q^) 

. a_ . <y Dg 

that is 

therefore 

finally 

9   rl    \/ 2 2 

8q   Cq    VI    -  % qJ 

qqG(t) 
0   - (T - 1) —S 

q   - q, 

(Y - Dq 
2      2 

q   - qQ 

qG(t) 

q0ct) 

q0(t) 

q;ct) 

qo(t) 

qo(t) n—2 

$(q$t)   =   (Y ~   1) 
q2qp(t) 

2q>) 
+ G(t) y/q2  -  q2   + H(t) (6.5) 

in terms of functions of integration G(t)j H(t), 

These functions G(t); K(t) are not arbitrary however, 

since (6,5) must satisfy, if possible, the non-linear equation 

(5»3l+)»  To express $(q;t) in terms of (y$t) resort must be made 

to the fundamental field equation, which relates the two systems, 

(b + r r • q = C 

Since 

q = (q cos Oj q sin Q)   ~   [q0(t); q sin 0] 

^W«'.%\^\.:M^-i^i.*w**?wtvasaiBeKw  • .- - .-.-. r  • •«•.;;•. 
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. i 

then 

that is 

q = [C ; sin © + q© cos 9] 
-q * 

n = [0 ; cosec 9] 
Jq 

in virtue of (6,h),     Therefore the field equation reduces to, 

simply, 
y = - $ sin © 

or, substituting for 9(q;t) from (6.3), 

v = - 1 
q 

' 2   2 Jq  - qf • * V     0   q 
(6.6) 

Eq-aations (6,6)., and (6.5) may be used to obtain the function 

q(y^t;) explicitly; since 

y = - (Y - 1) \jq     - q2 • -{? 
q..(t) 

- G(t) 
q0(t) 

therefore 

2   2 q  = q^ + 
^o 

qo(t)
2 

(Y - l)
2q^(t) 

o [7 + G(t)] (6.7) 

If this expression for q = q(y;t) is inserted in (6*5) 

an expression of $ as a function of (y;t) will be obtained.  This 

representation is of the form 

<Ky;t) = - i y^A(t) + B(t) (6.8) 

where A(t); B(t) [being given in terms of qo(t); G(t); H(t)] 

are not arbitrary but must satisfy the equivalent of equation 

(5*3^)> when the q-derivatives of $ are transformed into ones 

v/ith respect to y. 

Returning to the original equation for q(y;t)j 

V2T -- 
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2       ..2^. 0._.      ,    /„2       ..2. (a    - u  )ux - 2uvuy +   {or  - v  )vy = 2(uu + vv)  +9 

this reduces to,  since u = u(t)  [= q  (t)]   and v = v(y;t), 

(a'" - v  )v    = 2(uu + w)  + 9 (6,9) 

Tt should be recalled that the condition for irrotaticnal flow 

V„ = u ., is automatically satisfied "by this system I"u(t), v(y;t)] 
A       y 

Also 

ana 

therefore. 

and 

^    -  1 (n2      „2,  • 

9 - <2> + xu(t) + yv(y;t) 

<&  =0;  Co + vv -•= 0 
x     y  y 

9 = $ + xu + yv 

cp = Q,  + xu. . + yv. , 
tx,    ct    tt 

Substitution into (6.9) gives 

(Y - 1) C ^(c2 - u2 - v2) - »t - xut - yvt]v. 

- v vy = 2(uut + wt) + *u + xutt + yvu(6.10) 

u, v, <*> are independent of x, therefore 

(Y - D%v + u  - 0 

Put u contains t only, therefore, 

u, 
tt 

so that 

v = - _ 7 (Y - Du, 
- A(t),  say 

... -  •; 
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' 

v(y,t) - yA(t) + D(t) 

u(t) = J exp [ - (Y - 1) A(t)dt) Jdt 

(6.11) 

(6.12) 

When (6.8), and (6,11) are inserted in (6.10), there results a 

quadratic expression in y and the coefficients, v/hich are func- 

tions of t only, must be chosen so that the equation vanishes 

identically.  This will yield three equations for A(t); B(t)| 

D(t).  [The functions A(t) occurring in (6.8), and (6,11) are 

identified in virtue of $ +• yv. = 0, ]  These equations are 

Att + (Y + 3)AAt + (r + DA
3 = 0 (6.13) 

Dtt + (Y + DA(Dt + AD) + 2DAt = 0 (6.1M-) 

(Y - 1)A[1 (c2 - u2 - D2) + Btl = AD
2 + 2DD^ - B,. + 2uu.(6.15) 

The first equation (6,13) determines A(t) without refer- 

ence to the remaining functions D(t), B(t).  Let X - 2/(y+ D 

and rewrite (6,13), 

3 _ \A^V + 2(\ + DAA + 2AJ = 0 (6.16) 

which may he factorized into either of the forms 

(2A + \ JL)(A2 + dA) = 0 

(2A + A.) (A2  + \  dA> s 0 
c-v •      dt' 

(6.17) 

(6.18) 

Jo solve write p = dA/dt$ p dp/d-A ~ a A/dt and w = A"/p so that 

2AdA = pdw + wdp 

\ 
" :>M#»4^:»»M^!vW_«*«w*«W'i»"»'**' i MOE •• • M *       * .     . •    RMttMOT***       »T«^I 
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then (6,16) becomes 

(w + l)(w + X)dp + (1 + to + \)du = 0 

giving, on integration in terms of a constant JX, and resubstitu- 

ting a s pUj p = A. ; 

(A2 + At)
X = n(A2 + \At) (6.19) 

• 

1 

Since k  = 5/6 for y = 7/5> attention would have to be confined 

to the special values of u, = 0, co , since it is not clear how to 

integrate again the first order equation (6,19), However a 

parametric solution of (6,16), in which A and t are expressed in 

terms of a common parameter z, may bo obtained which avoids 

resorting to (6.19)» 

Let A = i|>t/\|> then At + A
2 = $tt/$  so that (6.17) yields 

(2^ + X* JL) (^t J = 0 

that is 

x^_ttt 

tt * 

• 

(2 - \)  l£ = 0 

therefore, if ;x, \Ji are constants, 

i2   2 i  ,  X i|»t = p. j^ 

When y = 7/5? X - 5/6 therefore 

- tii ^o J 

2        ?    -2>*5        -P/5 +; = ia2(^ — -v   ) 

If t|> = T|»    sin © then 

^ 
... ,-i 
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6/5 P  5 
lit = 5^0    sin OdO 

giving 6/c^        i,        2 
3^Lt = - t|£ cos ©(3 cos4"© - 10 cos © + 15) 

or 

where 

3Ht = - tl^zOz1* - 10z2 + 15) 

z = cos 8, i|) = \|» (1 - z2)?/2. 

It remains to express A also in terms of ©, 

+4 

wherej from (6.20), 

A B 4 * 5 cot e©t 

?v0  sin-0©t = p 

so that 
A(6) = (J,\j) ' cos © cosec 6 

78 

(6.20) 

(6.21) 

Jl 

mererore fcne solutxoxi c>x v^s-i-*-"'./ is&y us arrangsu. A** ohs ^crrr. 

A = a cos 6 cosec © 
*> (6.22) 

at = - 5 cos ©(1 + 1 cos 6 - -f cos2©) 
5       3        j 

-6/5 where a(=|jwj)   ) is an arbitrary constant. 

When these results are inserted in (6.1*+) in which D is 

now regarded as a function of G so that 

then 

5 sin5© Dt a aD 

2 5 sin"© D  = a2(sin ©D  - 5 cos Q DQ) 

D , + 7 cot ©Dn - 10 D = 0 ©w © 

Let z = cos Q then the equation for D becomes 

(6.23) 

(1 - z )D  - 8z D - 10 D = 0 zz      z 
(6.2*0 
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•,. 

Finally (6.2^) reduces to the hypergeometric equation 
o 

by the substitution x = z , 

x(l - x)Dxx + 1 (1 - 9x)Dx - | D = 0 (6.25) 

with general solution, with the usual notation for the hyper- 

geometric functions, 

D(x) ~  a-jFCl, |, ^, x) + a?x  F(|, 3, |, x) 

For the given values, the tv/o independent solutions reduce to 

the finite forms 

-3 i 

F(|, 3, ^, x) = (1 - x) 

F(l, L  i, x) = - l(x2 - '.x - 3)(1 - x)"3 

(6.26) 

cL • 3 J 

Therefore, in terms of ©, where x = cos '©, 

D(Q) = a2cos 8 cosec © + a., (cos © - 6 cos © - 3)cosec © (6.27) 

The first, independent solution of (6.23) is, by comparison with 

(6.22), just a constant multiple of A(©).  This is otherwise 

obvious since if D(t) = constant x A(t) then equations (6.13) • 

and (6.1>+) become identical and reduce to 

D. . + (Y + 3)DD. + (y + DD3 = 0 tt 

Knowing that one solution of (6,2^-) is simply z(l - z ) 

it is possible to evade the general method (which leads to the 

hypergeometric equation (6,25) and the reduction then necessary 

to deduce the finite forms (6,26) from the original infinite 

2,-3 
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series) by seeking a solution 

? -3 
D(z) = w(z)z(l - z^) 

•- 

A 

where w(z) is to be determined by direct insertion into (6.2^). 

This gives for w(z) 
CO 
zz 

u„ 
2ii_j_jza 
z(l - z2) 

then 
W(z) = K^^ „ 6z3 _ 3) + Kt 

if K, Kf are constants.  Therefore for the second independent 

solution of (6.2*+) we can take 

D(z) = (z^ - 6z3 - 3)(i _ z2)"3 

which reproduces the second term of (6,27) with z  = cos 

When also expressed in terms of z, 

A - ccz(l - z2)"3 

Q  = /x. 

at = - *. z(3^ - 10z2 + 15) ( (6.29) 

«£ . . 5(1 . ,2)8 
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• 

• \ 

The Flow in the Physical Plane. Attention will be con- 

centrated on the functions given by 

where 

A(t) =oz(l - z2)"3;  D(t) =6z(l - z2)"5 

at = -  f- Oz4" - lOz^ -r 15) 

then clearly for v(y;t)  in   (6,11) we can take, with p  = - ocyQ, 

(6.30) v = az(y - y0)P   -  z2) 

u(t) is given by (6.12) rewritten, in virtue of (6.29), 

A <log V - - f ft •2z<1 -22)_1 

therefore on integration in terms of parameters ((j,,u0), 

u - uQ = a;j.z(z
<i - 3) (6.3D 

The formulae (6.30), and (6.31) represent the complete parametric 

solution to the motion; z being given in terms of t by (6.29), 

To obtain the instantaneous streamlines (Fig. 3) defined by 

dx " u 

use (6.30), and (6,31) then 

oi s (y - yo}g(z) 

(where g(z) = -1  =- for u - 0). By integration 
H(3 - z?-)(l - 22)3     ° 

the streamlines are obtained 

(x-x0)g(z) (6.32) 

11 
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since z is a function of time only. 

To obtain the particle paths, the simultaneous equations 

I 
clx 

(10 

' 

^*u(z)5 % = v(yjt) 

in which z(t) is known, must be integrated. 

Write 

% « v(y;z) || = - 5z(y - y0)d - z
2)"1 

after using (6.30), and (6.29).  On integration this yields 

p 2/5 
1 - z = K(y - y0)  , (6.33) 

K being a constant. 

Also 

|f = u(z) tt 8 - 1  [u + ap.z(z2 - 3)3(1 - z2)2 

uz      az    a  ° 

so that x may be expressed as a polynomial in z, which, in con- 

junction with (6.33)> will provide the particle paths in terms of 

z as current parameter. 

If u0 = 0 then 

$£  - „ cr,,"r72 r>\(~,   _ 72\2 dz   ?p.2».z - JJU - z ; 

and 

,. 2Z =    y " yo    
(z - 3) U - z ) 

?        Substituting for z from (6.33) gives 

^g,(y.yo)-V5|2+K(y_y//5j 
\-l 
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therefore 

! . -X- - 1 (y - y )b/5 + | (y - y )°" + K'       (6.3»0 

t 

I I the constants of integration (K, K1) being used to specify the 
I P 

ocr particles, by, for example, their positions at some specified 

time. We will consider a < 0, ji < o*  On putting n = y - y0 

the particle paths may be written parametrically in terms of T] 
* 

• 

^1 

to rationalize  (6,3l+)J 

5^> 
2l+x     =  q6(8   + 3Kq2)   + K« 

where a is a constant for the flow as a whole but where K, K* 
p 

are used to parameterize the CD particles.  The fluid particli 

(K,K') is situated at [x(f]), y(r])] at the time t(q) given by 

2 2 If 2 
3at = - \/l - Kt] •   (3K n   +lfKn + 8) 

(obtained by eliminating z between (6,29) and (6.33).  In the 
2   . 2 

present solution |z | <£ 1 therefore, since 1 - z = K.TJ ,the para- 

meter K must be positive for all particles.  It follows that the 

current parameter r\ is confined to the range (- K  , +K  )• 

By first drawing the separate curves of (x,y) against rj and after- 

wards combining them to obtain the particle paths given by the 
-1/2 

x against y curves.  At zero time r\  = K    and z = 0 therefore 

\ u = v = 0 everywhere.  Thus the fluid is instantaneously at rest 

| at zero time when the particles begin to advance towards the 

line y = yQ, arriving there at t = -8/3a ( > 0) when t) = 0. It 

is easilv verified that 
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9u - 3^q„    av . ., av _   a2 

therefore the acceleration becomes infinite when r\ -  0. The 

curves of x and y against T) and the final (x,y) curve for this 

solution are denoted ~oy  the full lines in Figures 12, 13 and !•+• 

The present analysis cannot yield a solution for 

t > - 8/3<x or for y < yQ. 

In the equation preceding (6.20) it would be equally 
v. 

legitimate to use 

$\  =H-20T2/5 +^'o2/5'' 

-6/5 
and the relevant equation- now become, j.f a =jiv|) 

o     ? '2. 

2    -3 A - a z(z - 1) 

3at = zilz"  - 10z2 + 15) 

«g§ . ?(z2 - D2 

v(yjt) = (y - yjA(t) =az(y - yn)(z
2 - l)"3 

u(t) = u. + a,u z(z2 - 3) 

The instantaneous streamlines are now given by, when u = 0, 

+(x-x )g(z) 
v - y = e    u 

o 

(ig(z) = (z2 - 3)_1(z2 - I)"3 

and the particle paths by 

•-} 
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5 2 2 
y - yn = n  ,     z   - I = Kn - 

q (3Ktjc- 8) + K« 

3at = - /T7J?  .t^^-^+B] 

where [x(r)), y(r;)], Z(TJ) give the position and -speed as above at 

time t(f)) of the particle (K, K"). We may choose y0 = 0 without 

loss cf generality. 

This second solution applies when jz | J£ 1 and therefore 

the parameter K must be positive for all particles since 
2       2 

z - 1 = KTJ « Unlike the first solution, however, the parameter 

may take on all real values.  In the diagrams (Figs. 12, 13j 

and 1M-) the first solution is shown by the full lines and the 

second solution by the broken lines.  The first solution ceases 
Q 

to apply when the time t =1—1 is reached, and the second 
' 3ot ' 

solution only applies for t > j -u—{ »  Therefore a solution valid 
3a 

for 0 _£ c < co may be obtained by concentrating attention on the 

section 0A( r) > 0) of the first solution in conjunction with sec- 

tion OB (t) £0)  of the second.  Initially only the upper half 

plane is occupied by fluid instantaneously at rest, corresponding 

to point A (z = t = 0, r\ = K '   ), When point 0 (TJ = 0) is 

reached the fluid is moving with velocity approaching ao and the 

acceleration is infinite at time | JL|.  If the second solution 
30i 

OB is then considered, the fluid concentrated along the x-axis 

expands into the lov/er half plane and eventually recedes to 

infinity parallel to this axis. The diagrams show only the motion 

of a typical value of K and when K' = 0,  The constant K' merely 

serves to provide the x-wise position of the fluid elements at, 

V 
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say, t = 0. 

The phenomenon which takes place on the axis is not a 

simple shooK  In the initial motion the advancing layers of f3.uid 

overtake themselves and cause a concentration of fluid moving at 

high speed across the axis, thereafter reducing speed durixig the 

subsequent motion in the lower half plane, but accelerating, 

again, to the rxght as t —>co. 

Conclusion.  The more important results of this work may 

be summarized as follows. 

1. In unsteady potential flow of the simple wave pattern, 

the linos of constant (q,6) are straight,  However, in 

the general flow q(\;t), the pressure and density and 

acoustic speed are not constant along such lines, except 

in the simplified case c[(X).  In all cases these lines 

may constitute a system of parallel lines parallel to 

a fixed direction but may never be concurrent.  In 

gnnoral the X-lines envelope some curve, which grows 

linearly with time in the simplified wave, 

2, In the general wave, the solution for © and $ may be 

expressed in terms of four functions of the parameter 

X(q;t)t these functions being chosen so that together 

they satisfy a Monge-Ampere equation for X(q;t),  This 

representation is sufficient to show that the X-lines 

can never be concurrent in the physical plane and that 

it is net possible to obtain any flows of an oscillatory 

nature. 
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I   : 

These deductions are in contrast to the steady flow 

phenomena* For steady potential flow the \-lines may he parallel, 

concurrent or possess a non-degenerate envelope. If the steady 

iso-energetic flows become rotational then the lines never possess 

a non-degenerate envelope and must either be parallel or con- 

current.  In contrast the latter alternative is the very case 

which is excluded when the simple wave becomes unsteady. It is 

useless therefore to attempt to obtain an unsteady simple centred 

^ave, just as it is impossible to generalize the steady rotational 

simple centred wave- 

B U 
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